258

QUESTION PAPER SERIES CODE

A

Registration No. :	
Centre of Exam. :	

Signature of Invigilator

Maximum Marks: 80

ENTRANCE EXAMINATION, 2018

Ph.D. in COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
P.G. Diploma in BIG DATA ANALYTICS

[Field of Study Code : CBBH (903) / PGDE (184)]

Time Allowed: 3 hours

INSTRUCTIONS FOR CANDIDATES

Candidates must read carefully the following instructions before attempting the Question Paper:

- Write your Name and Registration Number in the space provided for the purpose on the top of this Question Paper and in the Answer Sheet.
- (ii) Please darken the appropriate Circle of Question Paper Series Code on the Answer Sheet.
- (iii) The Question Paper consists of three Tracks: (1) Physical Sciences; (2) Life Sciences/Bioinformatics and (3) Engineering Sciences. Each Track has two Parts: Part—A and Part—B. Please choose any ONE Track, and answer Part—A and any one Section of Part—B within this Track.
- (iv) Each Part—A consists of thirty (30) questions. All questions are to be answered. Each correct answer will be awarded 1 mark.
- (v) Part—B consists of different subjects within a Track with 40 subject-specific questions in each of the Sections, out of which candidates are to answer any 25 questions. Each correct answer will be awarded 2 marks subject to a maximum marks of 50.
- (vi) There is NO negative marking in any Part/Section.
- (vii) Answer all the questions in the Answer Sheet provided for the purpose by darkening the correct choice, i.e., (a) or (b) or (c) or (d) with BLUE/BLACK BALLPOINT PEN only against each question in the corresponding circle.
- (viii) In case you think none of the possible answers are correct, mark the correct answer which you think is closest to the correct one.
- (ix) Answer written by the candidates inside the Question Paper will not be evaluated.
- (x) Simple Calculators and Log Tables may be used.
- (xi) Pages at the end have been provided for Rough Work.
- (xii) Return the Question Paper and Answer Sheet to the Invigilator at the end of the Entrance Examination. DO NOT FOLD THE ANSWER SHEET.

INSTRUCTIONS FOR MARKING ANSWERS

- 1. Use only Blue/Black Ballpoint Pen (do not use pencil) to darken the appropriate Circle.
- 2. Please darken the whole Circle.
- 3. Darken ONLY ONE CIRCLE for each question as shown in example below :

Wrong	Wrong	Wrong	Wrong	Correct
• © © •	Ø 60 60 60	Ø 6 6 Ø	● ⓑ ⓒ ●	a b c

- 4. Once marked, no change in the answer is allowed.
- 5. Please do not make any stray marks on the Answer Sheet.
- 6. Please do not do any rough work on the Answer Sheet.
- 7. Mark your answer only in the appropriate space against the number corresponding to the question.
- Ensure that you have darkened the appropriate Circle of Question Paper Series Code on the Answer Sheet.

/258-A

TRACK-I

PHYSICAL SCIENCES

PART-A

(Common for Track-I)

- 1. Two resistance wires on joining in parallel have a resultant $\frac{6}{5}\Omega$ One of the wires breaks. The effective resistance is 2Ω . The resistance of the broken wire is
 - (a) $\frac{6}{5}\Omega$
 - (b) 2 Ω
 - (c) $\frac{3}{5}\Omega$
 - (d) 4 Ω
- 2. The property of fluid that describes its internal resistance is known as
 - (a) viscosity
 - (b) friction
 - (c) resistance
 - (d) internal energy
- 3. The ratio of the intensity at the centre of a bright fringe to the intensity at a point one-quarter of the distance between two fringes from the centre is
 - (a) 2
 - (b) $\frac{1}{2}$
 - (c) 4
 - (d) 16
- 4. A simple pendulum has a time period T_1 when observed on the surface of the earth and T_2 when taken to a height R above the earth's surface. The ratio T_2 / T_1 is
 - (a) 1
 - (b) √2
 - (c) 4
 - (d) 2

- 5. An ideal choke takes a current 8 A when connected to an a.c. source of 100 volts and 50 Hz. A pure resistor under the same conditions takes a current of 10 A. If the two are connected in series to an a.c. supply 100 volts and 40 Hz, then the current in the series combination of above resistor and inductor is
 - (a) 10 A
 - (b) 8 A
 - (c) 5√2 A
 - (d) 10√2 A
- 6. When a charge +q is brought near an isolated metal cube having no charge initially, then
 - (a) the cube becomes positively charged
 - (b) the cube becomes negatively charged
 - (c) the external surface becomes negatively charged and the interior becomes positively charged
 - (d) the interior remains charge free and the surface gets non-uniform charge distribution
- 7. A block is suspended by an ideal spring of the force constant K. If the block is pulled down by applying a constant force F and if maximum displacement of the block from its initial position of rest is δ, then
 - (a) $\frac{F}{K} < \delta < \frac{2F}{K}$
 - (b) $\delta = \frac{2F}{K}$
 - (c) $\delta = \frac{F}{K}$
 - (d) increase in potential energy of the spring is $\frac{1}{2}K\delta^2$
- 8. A particle of mass m collides with another stationary particle of mass M. If the particle stops just after the collision, the coefficient of restitution of collision is equal to
 - (a) 1
 - (b) $\frac{m}{M}$
 - (c) $\frac{M-m}{M+m}$
 - (d) $\frac{m}{M+m}$

- 9. What is the dimensional formula of kinematic viscosity?
 - (a) $M^1L^{-1}T^{-1}$
 - (b) $M^1L^{-3}T^0$
 - (c) $M^1L^1T^{-2}$
 - (d) $M^0L^2T^{-1}$
- 10. The molecules of a gas A travel four times faster than the molecules of gas B at the same temperature. The ratio of molecular weights $\frac{M_A}{M_B}$ will be
 - (a) $\frac{1}{16}$
 - (b) 4
 - (c) $\frac{1}{4}$
 - (d) 16
- 11. Peptide bonding results in the formation of an
 - (a) ester
 - (b) amide
 - (c) ether
 - (d) aldehyde
- 12. What does a pH meter measure?
 - (a) Voltage
 - (b) Current
 - (c) Resistance
 - (d) Power
- 13. The density of a gas is directly proportional to its
 - (a) pressure
 - (b) volume
 - (c) temperature
 - (d) molecular velocity

14. T	The ch	nemical reactions al	ways involve					
((a) r	elease of energy			54			
((b) a	bsorption of energy						
	(c) I	elease or absorption	n of energy					
110	(d) 1	elease and absorpti	on of energy					
15.	Oxida	tion is characterize	d by					
	(a)	loss of electrons						
	(b)	gain of electrons						
	(c)	loss of protons						
	(d)	gain of protons						
		h one of the followi	ng has the large	st aton	nic radii?			
16.	Whic		ing mas are mag-	3.3	130			
	(a)	Ne						. 8
	(p)	Ве			2			
	(c)	N						
	(d)	0						
17.	Whi	ch of the following	changes involves	reduct	ion?			
	(a)	The conversion of	ferrous sulphate	to ferr	ric sulpha	ite		
	(b)	The conversion of						
	(c)	The conversion of						
	(d)	The conversion of						
18.	The	molality of 40% N	aOH (w/w) with	density	1.2 g/m	L is		
	(a)	22.3						
	(b)	12						
	(c)	16.7						
	(d)	18						
		e electromagnetic ra	diation used to fit	nd out	the spacir	ng between	n planes in a	lattice is
19.			diation docu					
	(a)				23			2
	(b)	1.00-0.00-0.00-0.00						
	(c)							
	(d							
						1		
/25	8-A			6				
- 5300								

- 20. 1 nm is equal to
 - (a) 10⁻⁷ cm
 - (b) 10⁻⁸ cm
 - (c) 10⁻⁹ cm
 - (d) 10⁻¹⁰ cm
- 21. The differential equation of all conics having centre at the origin is of order
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) 5
- 22. Order and degree of differential equation of all tangent lines to the parabola $y^2 = 4ax$ are
 - (a) 2, 2
 - (b) 3, 1
 - (c) 1, 2
 - (d) 4, 1
- 23. The differential equation whose solution is $Ax^2 + By^2 = 1$, where A and B are arbitrary constants is of
 - (a) second order and second degree
 - (b) first order and first degree
 - (c) first order and second degree
 - (d) second order and first degree
- **24.** The solution of xdy ydx = 0 represents
 - (a) parabola having vertex at (0, 0)
 - (b) circle having centre at (0,0)
 - (c) a straight line passing through (0, 0)
 - (d) a rectangular hyperbola
- **25.** The solution of the initial value problem $x \frac{dy}{dx} = x + y$; y(1) = 1 is
 - (a) $x \log x 1$
 - (b) $x \log x + 1$
 - (c) $x(\log x + 1)$
 - (d) $x(\log x 1)$

- **26.** The directional derivative of the scalar function $f(x, y, z) = x^2 + 2y^2 + z$ at the point P = (1, 1, 2) in the direction of the vector $a = 3_i 4_j$ is
 - (a) 4
 - (b) -2
 - (c) -1
 - (d) 1
- 27. The function Y = |2 3x| is
 - (a) continuous $\forall x \in R$ and differentiable $\forall x \in R$
 - (b) continuous $\forall x \in R$ and differentiable $\forall x \in R$ except at $x = \frac{3}{2}$
 - (c) continuous $\forall x \in R$ and differentiable $\forall x \in R$ except at $x = \frac{2}{3}$
 - (d) continuous $\forall x \in R$ except at x = 3 and differentiable $\forall x \in R$
- 28. A cubic polynomial with real coefficients
 - (a) can possibly have no extrema and no zero crossings
 - (b) may have up to three extrema and up to two zero crossings
 - (c) cannot have more than two extrema and more than three zero crossings
 - (d) will always have an equal number of extrema and zero crossings
- 29. The area enclosed between the parabola $y = x^2$ and the straight line y = x is
 - (a) $\frac{1}{8}$
 - (b) $\frac{1}{6}$
 - (c) $\frac{1}{3}$
 - (d) $\frac{1}{2}$
- 30. The system of linear equations, 4x + 2y = 7, 2x + y = 6 has
 - (a) a unique solution
 - (b) no solution
 - (c) an infinite number of solutions
 - (d) exactly two distinct solutions

PART-B

Section-I

(Physics)

31. The electromagnetic wave equation with velocity v for electric and magnetic fields \mathbf{E} and \mathbf{B} expressed in Cartesian coordinates f is given by

(a)
$$\nabla f = \frac{1}{v^2} \frac{\partial f}{\partial t}$$

(b)
$$\nabla^2 f = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$$

(c)
$$\nabla^2 f = -\frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$$

(d)
$$\nabla f = v$$

32. Consider an electromagnetic wave is propagating through a homogeneous linear medium of permittivity ϵ , permeability μ and dielectric constant ϵ_r . The refractive index of the material is given by

(a)
$$n = \mu$$

(b)
$$n = \varepsilon$$

(c)
$$n \approx \frac{\mu}{\varepsilon}$$

(d)
$$n = \sqrt{\varepsilon_r}$$

33. Consider a parallel-plate capacitor filled with an insulating material of dielectric constant ε_r . If C_0 is the capacitance in vacuum, what is the capacitance driven by the material?

(b)
$$C = \frac{C_0}{\varepsilon_r}$$

(c)
$$C = \frac{\sqrt{C_0}}{\varepsilon}$$

(d)
$$C = \varepsilon_r C_0$$

P.T.O.

- 34. If the current density in a wire of cross-sectional area r is proportional to the distance from the axis d given by J = kd, where k is a constant, then total current in the wire is given by
 - (a) $I = \frac{2\pi k d^3}{3}$
 - (b) $I = \frac{kd^2}{\pi}$
 - $(c) I = \frac{2\pi k}{3d^3}$
 - (d) $I = 2\pi k d^3$
 - 35. The magnetic field of a uniformly magnetized sphere of radius R (inside the sphere) is given by
 - (a) $\mathbf{B} = \frac{2}{3}\mu_0 \mathbf{M}$
 - (b) $\mathbf{B} = \frac{1}{R} \mu_0 \mathbf{M}$
 - (c) $\mathbf{B} = \mu_0 R \mathbf{M}$
 - (d) **B** = **M**
 - **36.** Let R and T be reflection and transmission coefficients of an electromagnetic wave traversing from one medium to another. If the permeabilities of the two media are taken to be the same, which of the following is true?
 - (a) R + T > 1
 - (b) R + T < 1
 - (c) R + T = 1
 - (d) R+T=0

- 37. If V and A are scalar and vector potentials, then they can be transformed with a scalar λ by gauge transformation given by
 - (a) $\mathbf{A}' = \mathbf{A} + \nabla \lambda$, $V' = V \frac{\partial \lambda}{\partial t}$
 - (b) $\mathbf{A}' = \mathbf{A} + \nabla \lambda, \quad V' = V + \frac{\partial \lambda}{\partial t}$
 - (c) $\mathbf{A}' = \mathbf{A} \nabla \lambda$, $V' = V + \frac{\partial \lambda}{\partial t}$
 - (d) $\mathbf{A}' = \mathbf{A} \nabla \lambda$, $V' = V \frac{\partial \lambda}{\partial t}$
- 38. Is it possible for a $2^2 P_{5/2}$ state to exist?
 - (a) Yes
 - (b) No
 - (c) Cannot say
 - (d) None of the above
- 39. An electron collides with a hydrogen atom in its ground state and excites to a state of n = 3. How much energy was given to the hydrogen atom in this elastic collision?
 - (a) 1.21 eV
 - (b) 12·1 eV
 - (c) 121 eV
 - (d) 1000 eV
- 40. What is the quantum number of the Bohr orbit in a hydrogen atom whose radius is 0.01 mm?
 - (a) 235
 - (b) 335
 - (c) 435
 - (d) .535

- 41. Experiments indicate that 13.6 eV is required to separate a hydrogen atom into a proton and an electron. The velocity of the electron in a hydrogen atom is
 - (a) 2·2×10⁶ m/s
 - (b) 1×10⁵ m/s
 - (c) 2·2×10⁴ m/s
 - (d) $2 \cdot 2 \times 10^3 \text{ m/s}$
- 42. The average period that elapses between the excitation of an atom and the time it radiates is 10^{-8} s. The inherent uncertainty in the frequency of the photon is given by $(\hbar = 1.054 \times 10^{-34} \text{ J-s})$
 - (a) $\Delta v \ge 8 \times 10^6$ Hz
 - (b) $\Delta v \ge 7 \times 10^5 \text{ Hz}$
 - (c) $\Delta v \ge 6 \times 10^4 \text{ Hz}$
 - (d) $\Delta v \ge 5 \times 10^3 \text{ Hz}$
- 43. The spectral series whose lines have wavelength given by $\frac{1}{\lambda} = R\left(\frac{1}{5^2} \frac{1}{n^2}\right)$ is
 - (a) Lyman series
 - (b) Paschen series
 - (c) Brackett series
 - (d) Pfund series
- 44. The entropy of an ideal gas of N population at temperature T occupying volume V is given by
 - (a) $\frac{S}{Nk} = \ln(V) + \frac{3}{2} \ln T$
 - (b) $\frac{S}{Nk} = \ln{(V)} \frac{3}{2} \ln{T}$
 - (c) $\frac{S}{Nk} = \frac{3}{2} \ln T$
 - (d) $\frac{S}{Nk} = \frac{3}{2}V \ln T$

45. For gas-liquid system, the chemical potential (μ) can be expressed in terms of Helmholtz's (A) and Gibbs' (G) free energies as

(a)
$$\mu = \left(\frac{\partial A}{\partial N}\right)_{V,T} = \left(\frac{\partial G}{\partial N}\right)_{V,T}$$

(b)
$$\mu = \left(\frac{\partial A}{\partial N}\right)_{V, T} = \left(\frac{\partial G}{\partial N}\right)_{P, T}$$

(c)
$$\mu = \left(\frac{\partial A}{\partial N}\right)_{P,T} = \left(\frac{\partial G}{\partial N}\right)_{V,T}$$

(d)
$$\mu = \left(\frac{\partial A}{\partial N}\right)_{P,T} = \left(\frac{\partial G}{\partial N}\right)_{P,T}$$

46. For van der Waals' equation of state given by $\left(V - bP + \frac{a}{V^2} = RT\right)$, the critical values of the thermodynamical parameters are given by

(a)
$$T_c = \frac{27bR}{8a}$$
, $P_c = \frac{a}{27b^2}$, $V_c = 3b$

(b)
$$T_c = \frac{8a}{27bR}$$
, $P_c = \frac{a}{27b^2}$, $V_c = 3b$

(c)
$$T_c = \frac{8a}{27bR}$$
, $P_c = \frac{27b^2}{a}$, $V_c = 3b$

(d)
$$T_c = \frac{27bR}{8a}$$
, $P_c = \frac{27b^2}{a}$, $V_c = 3b$

47. Consider Fermi-Dirac distribution of particles in a system. The internal energy per particle at absolute zero (U_0 / N) of such distribution system with Fermi energy ε_F is given by

(a)
$$\frac{U_0}{N} = \frac{3}{2} \varepsilon_F$$

(b)
$$\frac{U_0}{N} = \frac{1}{2} \varepsilon_F$$

(c)
$$\frac{U_0}{N} = \frac{3}{5} \varepsilon_F$$

(d)
$$\frac{U_0}{N} = \frac{3}{7} \varepsilon_F$$

is

48. Consider a distribution of boson particles in a system. The specific heat per unit volume in such distribution system is given by

(a)
$$C_V = 3\sigma T^2$$

(b)
$$C_V = 4\sigma T^3$$

(c)
$$C_V = 5\sigma T^4$$

(d)
$$C_V = 6\sigma T^5$$

(o is Stefan's constant)

49. A particle of mass m moves in a potential $V(r) = V_0 e^{-\lambda^2 r^2}$. What is the largest value of angular momentum L for which a circular orbit does in fact exist?

(a)
$$L_{\text{max}} = \frac{8mV_0}{\lambda^2 e^2}$$

(b)
$$L_{\text{max}} = \frac{V_0}{\lambda^2}$$

(c)
$$L_{\text{max}} = \frac{V_0}{\lambda^2 e^2}$$

(d)
$$L_{\text{max}} = \frac{8mV_0}{\lambda e}$$

50. The location of the centre of mass of a hollow hemispherical shell with uniform mass density and radius R is given by

(a)
$$x_{cm} = R$$

(b)
$$x_{cm} = \frac{2}{R}$$

(c)
$$x_{cm} = \frac{R}{2}$$

(d)
$$x_{cm} = \frac{R^2}{4}$$

- 51. A mass m travels perpendicular to a stick of mass m and length l, which is initially at rest. At what location should the mass collide elastically with the stick, so that the mass and the center of the stick move with equal speeds after the collision?
 - (a) $h = \frac{l}{\sqrt{2}}$
 - (b) $h = \frac{1}{2}$
 - (c) $h = \frac{l}{\sqrt{6}}$
 - (d) $h = \frac{l}{2\sqrt{2}}$

of

ass

- 52. Hamiltonian of a system of particles expressed in generalized coordinates q and p, and Lagrangian L is given by, $H = \dot{q}p L$. Then Hamilton's canonical equations are
 - (a) $\dot{q} = \frac{\partial H}{\partial p}$, $-\dot{p} = \frac{\partial H}{\partial q}$, $-\frac{\partial L}{\partial t} = \frac{\partial H}{\partial t}$
 - (b) $\dot{q} = \frac{\partial H}{\partial q}, -\dot{p} = \frac{\partial H}{\partial p}, -\frac{\partial L}{\partial t} = \frac{\partial H}{\partial t}$
 - (c) $\dot{q} = \frac{\partial H}{\partial p}$, $\dot{p} = \frac{\partial H}{\partial q}$, $\frac{\partial L}{\partial t} = \frac{\partial H}{\partial t}$
 - (d) $-\dot{q} = \frac{\partial H}{\partial p}, \ \dot{p} = \frac{\partial H}{\partial q}, \ \frac{\partial L}{\partial t} = \frac{\partial H}{\partial t}$
- **53.** The solution of the differential equation $\frac{dy}{dx} = \frac{y^2}{1 3xy}$ is
 - (a) 3y = x + c
 - (b) y = c
 - (c) $2xy^3 y^2 = 2c$
 - (d) $xy^2 = y + 2c$
- **54.** The solution of the differential equation $\frac{dy}{dx} + \frac{y \ln y}{x \ln y} = 0$ is
 - (a) y = x + c
 - (b) y = x
 - (c) $2x \ln y = (\ln y)^2 + 2c$
 - (d) $x(\ln y)^2 = \ln y + 2c$

55. The Fourier sine series expansion of f(x) = x in $(0, \pi)$ is

- (a) $f(x) = \sum_{1}^{\infty} \frac{1}{\pi} (-1)^{n-1} \sin(nx)$
- (b) $f(x) = \sum_{1}^{\infty} \frac{2}{n} (-1)^{n+1} \sin(nx)$
- (c) $f(x) = \sum_{0}^{n} \frac{1}{n} (-1)^{n} \sin(nx)$
- (d) $f(x) = -\sin(nx)$

56. The inverse Fourier sine transform of $\frac{1}{s}e^{-as}$ is

- (a) $f(x) = \frac{2}{\pi} \tan^{-1} \left(\frac{x}{a}\right)$
- (b) $f(x) = a \tan^{-1} \left(\frac{x}{a}\right)$
- (c) $f(x) = \frac{1}{\pi} \tan^{-1} (ax)$
- (d) $f(x) = -\pi \sin(\alpha x)$

57. The principal value of $\sqrt{2i}$ is

- (a) 1+i
- (b) i
- (c) i-1
- (d) 1

58. The residues at the poles of $\frac{2z+1}{z^2-z-2}$ are

- (a) $\frac{1}{3}, \frac{5}{3}$
- (b) $\frac{1}{2}, \frac{3}{2}$
- (c) 1, 3
- (d) $\frac{3}{2}$, $\frac{5}{2}$

- **59.** The value of $\int_C \frac{dz}{\sinh(2z)}$ with C: |z| = 2 is
 - (a) π
 - (b) 2π
 - (c) ni
 - (d) -πi
- **60.** The Laplace transform of $\int_0^t \frac{\sin(u)}{u} du$ is
 - (a) $s. tan^{-1} s$
 - (b) s. tan (s)
 - (c) (
 - (d) $\frac{1}{s} \tan^{-1} \left(\frac{1}{s} \right)$
- 61. In Laplace transform if $L\{f(t)\} = F(s)$, then $L\{f(at)\}$, where a is a constant, is equal to
 - (a) (1/a)F(s/a)
 - (b) aF(s)
 - (c) sF(a)
 - (d) (1/s)F(a/s)
- 62. Electrostatic force on a unit charged particle due to another identical one at a distance r is inversely proportional to r² as per Coulomb's law. If this force were inversely proportional to r instead of r², which of the following would be correct?
 - (a) Electric potential near a charged particle would be independent of distance from it
 - (b) Electric field near the charged particle would be inversely proportional to r^2
 - (c) Gauss' law of electric flux conservation would be violated
 - (d) Principle of conservation of charge would be violated
- 63. As per the Newtonian principles of relativity
 - (a) velocity of light is independent of the refractive index of the medium
 - (b) there is no upper limit on the velocity of light in an inertial frame of reference
 - (c) mass of a particle increases with velocity
 - (d) distance between two point objects will increase at high velocity

64. Two spheres of equal mass undergo head-on elastic collision. What is the consequence to their motion immediately after the collision? 68.

- (a) The direction of motion will be interchanged
- (b) Magnitudes of velocity will be interchanged
- (c) Both of the above
- (d) None of the two will change if it is an elastic collision
- 65. In a radioactive decay at its half-life period, which one is correct?
 - (a) Half of the time since a particle was created
 - (b) Half of the time to the radioactive decay of the particle is over
 - (c) The probability of the decay of the particle has decreased
 - (d) The probability of the decay remains unchanged
- 66. Which of the following is/are not valid type(s) of optical spectra from a single atom?
 - (a) Vibrational and rotational
 - (b) Electronic
 - (c) Mechanical
 - (d) Gravitational
- 67. A monochromatic radiation of wavelength λ_1 is incident on a stationary atom as a result of which the wavelength of the photon after collision becomes λ_2 . The atom has De Broglie's wavelength λ_3 and velocity in the direction on incident photon after collision. Then

(a)
$$\lambda_3 = \sqrt{\lambda_1 \lambda_2}$$

(b)
$$\lambda_1 = \frac{\lambda_2 \lambda_3}{\lambda_2 + \lambda_3}$$

(c)
$$\lambda_2 = \sqrt{\lambda_1^2 + \lambda_3^2}$$

(d)
$$\lambda_3 = \sqrt{\lambda_1^2 + \lambda_2^2}$$

68. A small charged particle of mass m and charge q is suspended by an insulated thread in front of a very large sheet of charge density σ. The angle made by the thread with the vertical in equilibrium is

(a)
$$\tan^{-1}\left(\frac{\sigma q}{2\varepsilon_0 mg}\right)$$

nce

sult has fter

(b)
$$\tan^{-1}\left(\frac{\sigma q}{\epsilon_0 mg}\right)$$

(c)
$$\tan^{-1}\left(\frac{2\sigma q}{\epsilon_0 mg}\right)$$

- (d) zero
- 69. The ratio of minimum to maximum wavelengths in the Lyman series of radiation that an electron causes in a Bohr's hydrogen atom is
 - (a) $\frac{1}{2}$
 - (b) $\frac{7}{9}$
 - (c) $\frac{3}{4}$
 - (d) $\frac{27}{32}$
- 70. The behaviour of a real gas is usually depicted by plotting compressibility factor Z versus pressure P at a constant temperature. At high temperature and high pressure, Z is usually more than one. This fact can be explained by van der Waals' equation with van der Waals' constants related to pressure and volume corrections a and b when
 - (a) the constant a is negligible and not b
 - (b) the constant b is negligible and not a
 - (c) both the constants a and b are negligible
 - (d) both the constants a and b are not negligible

Section-II

(Chemistry)

- 71. A buffer is formed by adding 500 mL of 0.20 M HC₂H₃O₂ to 500 mL of 0.10 M NaC₂H₃O₂. What would be the maximum amount of HCl that could be added to this solution without exceeding the capacity of the buffer?
 - (a) 0.01 mol
 - (b) 0.05 mol
 - (c) 0·10 mol
 - (d) 0.15 mol
- 72. A molecule exhibits sp^3d^2 hybridization in its bonding structure. The most probable geometric shape of this molecule is
 - (a) triangular bipyramidal
 - (b) T-shaped
 - (c) octahedral
 - (d) linear
- 73. What is the molality of a 10 % (by weight) C₆H₂O (MW=90) solution?
 - (a) 0.012 m
 - (b) 0·12 m
 - (c) 1·2 m
 - (d) 12 m
- 74. When a solid melts, which of the following is true?
 - (a) $\Delta H > 0$, $\Delta S > 0$
 - (b) $\Delta H < 0$, $\Delta S < 0$
 - (c) $\Delta H > 0$, $\Delta S < 0$
 - (d) $\Delta H < 0$, $\Delta S > 0$
- 75. Which of the following elements most readily shows the photoelectric effect?
 - (a) Noble gases
 - (b) Alkali metals
 - (c) Halogen elements
 - (d) Transition metals

76. An energy value of $3 \cdot 313 \times 10^{-19}$ joule is needed to break a chemical bond. What is the wavelength of energy needed to break the bond?

(The speed of light = 3.00×10^{10} cm/sec; Planck's constant = 6.626×10^{-34} J-s)

- (a) 5.00×10^{18} cm
- (b) 1.00×10^{15} cm
- (c) 2.00×10^5 cm
- (d) 6.00×10^{-5} cm
- 77. Which one of the following does not exhibit resonance?
 - (a) SO₂
 - (b) SO₃
 - (c) HI
 - (d) CO₃²
- 78. Which of the following best explains why sulfur can make more bonds than oxygen?
 - (a) Sulfur is more electronegative than oxygen
 - (b) Oxygen is more electronegative than sulfur
 - (c) Sulfur has 3d orbitals not available to oxygen
 - (d) Sulfur has fewer valence electrons
- 79. No two electrons of an atom can have the same sets of four quantum numbers. This is known as
 - (a) Heisenberg's uncertainty principle
 - (b) Hund's rule
 - (c) Pauli's exclusion principle
 - (d) Aufbau's principle
- 80. Among the following molecules, the shortest bond length is to be found in
 - (a) C₂
 - (b) N₂
 - (c) O₂
 - (d) F₂

		ave a mar f		
	(a)	higher for DCl		
	(b)	lower for DCl		
	(c)	same for the both		
-	(d)	It depends on the temperature		g 9 ¹
82.	Whe	n subjected to the flame test, a so	olution that contains K+	ions produces the color
	(a)	yellow		
	(b)	violet	9	
	(c)	crimson		
	(d)	green		
83.	The the	bond energy of Br—Br is 192 kJ approximate Cl—Br bond energ	/mole, and that of Cl—C	Cl is 243 kJ/mole. What is
	(a)	54·5 kJ/mole		
	(b)	109 kJ/mole		
	(c)	218 kJ/mole		
	(d)	435 kJ/mole	5 B	
84.	The	half-life of C is 5770 years. W	hat percent of the origin	nal radioactivity would be
84.	The pres	half-life of C is 5770 years. Weent after 28850 years?	hat percent of the origin	nal radioactivity would be
84.	pres	sent after 28850 years?	hat percent of the origin	nal radioactivity would be
84.	pres (a)	1.56%	hat percent of the origin	nal radioactivity would be
84.	pres (a) (b)	1.56% 3.12%	hat percent of the origin	nal radioactivity would be
84.	(a) (b) (c) (d)	1.56% 3.12% 6.26%		
	(a) (b) (c) (d)	1.56% 3.12% 6.26%	an assumption of the k	
	(a) (b) (c) (d) Wh	sent after 28850 years? 1·56% 3·12% 6·26% 12·5% ich one of the following is not and the followi	an assumption of the k nall ase in kinetic energy wh	inetic theory of gases?
	(a) (b) (c) (d) Wh (a) (b)	sent after 28850 years? 1·56% 3·12% 6·26% 12·5% ich one of the following is not : Gas particles are negligibly so Gas particles undergo a decre high pressure to a region of l	an assumption of the ki nall ase in kinetic energy wh low pressure	inetic theory of gases?
	(a) (b) (c) (d) Wh (a)	sent after 28850 years? 1·56% 3·12% 6·26% 12·5% ich one of the following is not and the followi	an assumption of the kinall ase in kinetic energy who we have the pressure	inetic theory of gases?
	(a) (b) (c) (d) Wh (a) (b)	1.56% 3.12% 6.26% 12.5% ich one of the following is not : Gas particles are negligibly sr Gas particles undergo a decre high pressure to a region of l Gas particles are in constant	an assumption of the kinall ase in kinetic energy who we have the pressure	inetic theory of gases?

/25

86. In expanding from 5·00 to 6·00 liters at a constant pressure of 2·00 atmospheres, a gas absorbs 505·64 joules of energy (101·32 joules = 1 liter atm). The change in energy ΔE, for the gas is

- (a) 50-66 J
- (b) 101·32 J
- (c) 303·00 J
- (d) 505·64 J

87. For the spontaneous freezing of supercooled water at -20 °C and 1 atm pressure, which of the following is true?

- (a) Del G_{system} < 0
- (b) Del $S_{\text{system}} > 0$
- (c) Del $H_{\text{system}} > 0$
- (d) Del $U_{\text{surrounding}} > 0$

88. Which of the following partial derivatives is zero for an ideal gas?

- (a) $\left(\frac{du}{dT}\right)_{v}$
- (b) $\left(\frac{dH}{dT}\right)_{I}$
- (c) $\left(\frac{du}{dv}\right)_T$
- (d) $\left(\frac{ds}{dv}\right)_T$

89. Which of the following is not an allotrope of carbon?

- (a) Diamond
- (b) C60
- (c) C70
- (d) C_2^{-2}

90. How much 2.0 MH₂SO₄ would be required to make 500 mL of 0.50 MH₂SO₄?

- (a) 100 mL
- (b) 125 mL
- (c) 250 mL
- (d) 500 mL

n of

is

be

- 91. What happens to the velocities of different molecules as the temperature of the gas increases?
 - (a) The velocities of all component molecules increase equally.
 - (b) The velocity range among different molecules at higher temperatures is smaller than that at lower temperatures.
 - (c) The effect on the velocities of the molecules depends on whether the pressure remains constant.
 - (d) The velocity range among different molecules at higher temperatures is wider than the range at lower temperatures.
- 92. The boiling points increase as F2 < Cl2 < Br2 < I2. The reason is
 - (a) van der Waals interaction
 - (b) ionic bonding
 - (c) electrostatics
 - (d) covalent bonding
- 93. Of the following experimental observations, which one shows the wave nature of electron?
 - (a) Photoelectric effect
 - (b) Ionization of an atom
 - (c) Diffraction of electrons by X-ray
 - (d) Flow of electrons in a metal wire
- 94. If ΔH° and ΔS° are both negative, then ΔG° is
 - (a) always negative
 - (b) always positive
 - (c) positive at low temperatures and negative at high temperatures
 - (d) negative at low temperatures and positive at high temperatures
- 95. What is the name of the following branched alkene? ${\rm CH_3(CH_2)_2C(CH_3)} = {\rm CHCH_3}$
 - (a) 3-methyl-2-hexene
 - (b) 2-methyl-3-hexene
 - (c) 1-methyl-2,3-diethyl-3-hexene
 - (d) 1-methyl-2,2-diethyl-3-hexene

10

96. The equilibrium constant for the formation of NO_2 from NO and O_2 at 298 K

$$NO(g) + \left(\frac{1}{2}\right)O_2 \longrightarrow NO_2(g)$$

where $\Delta G^{\circ}(NO_2) = +52 \cdot 0 \text{ kJ mol}^{-1}$, $\Delta G^{\circ}(NO) = 87 \cdot 0 \text{ kJ mol}^{-1}$, $\Delta G^{\circ}(O_2) = 0 \text{ kJ mol}^{-1}$, is

- (a) 1.562×10^8
- (b) 1.365×10⁶

re

an

of

- (c) 5.655×10^3
- (d) 8.56×10^2
- 97. In a mixture of He and Xe, at equilibrium the average speed follows ($V_{\rm He}$ and $V_{\rm Xe}$ are the velocities and $M_{\rm He}$ and $M_{\rm Xe}$ are the masses of He and Xe)
 - (a) $V_{\text{He}} / V_{\text{Xe}} = M_{\text{He}} / M_{\text{Xe}}$
 - (b) $V_{\text{He}} / V_{\text{Xe}} = M_{\text{Xe}} / M_{\text{He}}$
 - (c) $V_{\text{He}} / V_{\text{Xe}} = \operatorname{sqrt}(M_{\text{Xe}} / M_{\text{He}})$
 - (d) $V_{\text{He}} / V_{\text{Xe}} = \operatorname{sqrt}(M_{\text{He}} / M_{\text{Xe}})$
- 98. The rate of first-order reactions depends on
 - (a) concentration of substrate
 - (b) concentration of reactants
 - (c) concentration of both substrate and reactant
 - (d) concentration of neither substrate nor reactant
- 99. A large activation energy implies that the reaction
 - (a) is at equilibrium
 - (b) is endothermic
 - (c) has highly temperature dependent rate constant
 - (d) is spontarieous
- 100. The measurement of rate under conditions of insignificant substrate concentration change gives
 - (a) reaction velocity
 - (b) initial velocity
 - (c) reaction rate
 - (d) specific activity

101. According to Maxwell's law of distribution of velocities of molecules, the most probable velocity is

106

107

108

10

11

- (a) greater than mean velocity
- (b) equal to mean velocity
- (c) equal to root-mean-square velocity
- (d) less than the root-mean-square velocity
- 102. The relation between the number of microstates $\Omega(E)$ for an ideal gas of N monatomic molecules in a volume V is related to energy E as
 - (a) $\Omega(E) \propto E$
 - (b) $\Omega(E) \propto E^N$
 - (c) $\Omega(E) \propto E^{N/2}$
 - (d) $\Omega(E) \propto E^{3N/2}$
- 103. In a chromatographic separation, which of the following indices is the most appropriate for the qualitative identification of a substance?
 - (a) Relative retention factor
 - (b) Retention factor
 - (c) Retention time
 - (d) Resolution
- 104. A series of three coloured glass plates of equal thickness is placed in a light beam. Each plate absorbs one quarter of the light incident upon it. What is the intensity of the light transmitted by the third glass plate?
 - (a) 1.56%
 - (b) 42·19%
 - (c) 56·25%
 - (d) 75·0%
- 105. The wavelength of an absorption is 495 nm. In what part of the electromagnetic spectrum does this lie?
 - (a) Ultraviolet-visible
 - (b) Microwave
 - (c) Radio wave
 - (d) Infrared

Hexane and 3-methylpentane are the examples of 106. enantiomers (a) stereoisomers diastereomers constitutional isomers (d) The effect of temperature on the rate of reaction is given by 107. Gibbs equation van der Waals equation (b) Freundlich equation Arrhenius equation (d) The enzyme-catalysed reaction is faster than a metal-catalysed reaction because as 108. compared to the latter, the activation energy of the former is same (a) lesser (b) greater (c) None of the above The difference in experimentally measured heat capacity at low temperatures and the 109. predicted value from theory using equipartition principle is mainly due to decreased contribution from translational modes rotational .modes vibrational modes All of the above In NMR spectroscopy, which of the following can be used to measure the distance 110. between atoms? Nuclear Overhauser Effect (NOE) Coupling constant Magic angle spectroscopy (d) COSY

27

P.T.O.

ole

nic

iate

Each

light

metic

/258-A

Section—III

(Mathematics)

111.	The	Fourier	series	of	a	real	periodic	function	has	only
------	-----	---------	--------	----	---	------	----------	----------	-----	------

- P. cosine terms if it is even
- Q. sine terms if it is even
- R. cosine terms if it is odd
- S. sine terms if it is odd

Which of the above statements are correct?

- (a) P and S
- (b) P and R
- (c) Q and S
- (d) Q and R

112. Bernoulli's equation cannot be applied when the flow is

- (a) rotational
- (b) turbulent '
- (c) unsteady
- (d) All of the above

113. Relative density of mercury is

- (a) 1
- (b) 9.8
- (c) 13·6
- (d) 1000

114. If the Reynolds number is less than 2000, then the flow in a pipe is

- (a) turbulent
- (b) laminar
- (c) transitional
- (d) None of the above

115.	A flow is called supersonic if the		
2 TA 22 A 24	(a) velocity of flow is very high		
	(b) discharge is difficult to measure		
	(c) Mach number is between 1 and		
	(d) Mach number is less than 1		
116.	The continuity equation is the result of flow field?	f application of which of	the following laws to the
	(a) First law of thermodynamics		
	(b) Conservation of energy		
	(c) Newton's second law of motion		
	(d) Conservation of mass		8 3
117.	. Reynolds number signifies the ratio	of	
	(a) gravity forces to viscous forces		
	(b) inertial forces to viscous forces	3	
	(c) inertial forces to gravity forces		
	(d) buoyant forces to inertial force	es	
118	3. Which fluid does not experience sl	nearing stress during flo	w?
	(a) Pseudoplastic		
	(b) Dilatant		
	(c) Newtonian		
	(d) Inviscid		
		ai bird is	
11	9. Stress-strain relationship for Newt	onian iluid is	95
	(a) parabolic		
	(b) hyperbolic		
	(c) linear	140	
	(d) inverse type	% 4	C.
/2	258-A	29	[P.T.O

120.	The Pitot tube is used to measure		124
	(a) velocity at stagnation point		
	(b) stagnation pressure		
	(c) static pressure		
	(d) dynamic pressure		
121.	Centre of buoyancy always		
	(a) sainaides with the sector of section	74	12

- - coincides with the centre of gravity (a)
 - coincides with the centroid of the volume of fluid displaced (b)
 - (c) remains above the centre of gravity
 - (d) remains below the centre of gravity
- The eddy viscosity for turbulent flow is 122.
 - (a) a function of temperature only
 - (b) a physical property of the fluid
 - dependent on the flow (c)
 - independent of the flow (d)
- 123. Flow at constant rate through a tapering pipe is
 - (i) steady flow
 - uniform flow (ii)
 - (iii) unsteady flow
 - (iv) non-uniform flow

The correct answer is

- (i) and (ii) (a)
- (i) and (iv) (b)
- (ii) and (iii) (c)
- (d) (ii) and (iv)

124. Streamlines and path lines always coincide in case of

- (a) steady flow
- (b) laminar flow
- (c) uniform flow
- (d) turbulent flow

125. Consider the initial value problem :

$$y'(t) = f(t) y(t), y(0) = 1$$

where $f: R \to R$ is continuous. Then this initial value problem has

- (a) infinitely many solutions for some f
- (b) a unique solution R
- (c) no solution in R for some f
- (d) a solution in an interval containing 0, but not on R for some f

126. The differential equation $xu_x + yu_y = 2u$ satisfying the initial condition y = x g(x) and u = f(x) with

- P. f(x) = 2x, g(x) = 1, has no solution
- Q. $f(x) = 2x^2$, g(x) = 1, has infinite number of solutions
- R. $f(x) = x^3$, g(x) = x, has a unique solution
- S. $f(x) = x^4$, g(x) = x, has a unique solution

Which of the above are necessarily true?

- (a) P and Q
- (b) Q and R
- (c) P, Q and R
- (d) P, R and S

31

- 127. The partial differential equation $yu_{xx} + xu_{yy} = 0$ is hyperbolic in
 - (a) the second and fourth quadrants
 - (b) the second and third quadrants
 - (c) the first and second quadrants
 - (d) the first and third quadrants
- 128. Let V be the set of $n \times n$ upper triangular matrices over C. The dimension of V as a vector space over C is
 - (a) n^2
 - (b) $\frac{n(n+1)}{2}$
 - (c) n
 - (d) n(n-1)
- 129. Let A and B be $n \times n$ matrices over field F. Let rank A = n. Then
 - (a) rank AB = rank B = rank BA
 - (b) rank AB = rank A
 - (c) rank AB must be n
 - (d) rank AB must be less than n
- 130. Let A be an $n \times n$ real symmetric non-singular matrix. Suppose there exists $x \in \mathbb{R}^n$ such that x'Ax < 0. Then we can conclude that
 - (a) $\det(A) < 0$
 - (b) B = -A is positive definite
 - (c) $\exists y \in R^n : yA^{-1}y < 0$
 - (d) $\forall y \in R^n : yA^{-1}y < 0$

- 131. Dijkstra's algorithm is used
 - (a) for minimum spanning tree
 - (b) for shortest distance
 - (c) to find eigenvalue
 - (d) to find eigenvector
- 132. A graph is Eulerian if and only if the degree of each vertex of the graph is
 - (a) prime
 - (b) odd
 - (c) even
 - (d) fraction
- 133. A Petri net is always
 - (a) spanning graph
 - (b) directed bipartite graph
 - (c) complete graph
 - (d) tripartite graph
- 134. How many non-isomorphic trees are possible using six vertices?
 - (a) 12
 - (b) 10
 - (c) 5
 - (d) 6
- 135. If a connected planner graph G with n vertices and e edges has f regions, then
 - (a) n+e+f=2
 - (b) n-e-f=2
 - (c) n-e+f=2
 - (d) n + e f = 2

/258-A

136. Let $X = \{1, 2, 3, 4\}$ and binary relation R is defined as $R = \{(1, 1), (2, 1), (2, 2), (3, 3), (4, 4), (4, 3)\}$

then

- (a) R is reflexive, symmetric and transitive relation
- (b) R is not reflexive, not symmetric and transitive relation
- (c) R is reflexive, not symmetric and transitive relation
- (d) R is reflexive, not symmetric and not transitive relation
- 137. If f is any feasible flow and if (X, \overline{X}) is any cut, then the
 - (a) value of f ≥ capacity
 - (b) value of $f \le \text{capacity}$
 - (c) value of f is always zero
 - (d) value of f is negative
- 138. For what relations the vectors $x_1 = (1, 2, -1)$, $x_2 = (2, 1, -1)$ and $x_3 = (7, -4, 1)$ are linearly dependent?
 - (a) $\lambda_1 \lambda_2 + \lambda_3 = 0$, $3\lambda_2 6\lambda_3 = 1$
 - (b) $\lambda_1 + \lambda_2 \lambda_3 = 0$, $3\lambda_2 + 6\lambda_3 = 0$
 - (c) $\lambda_1 \lambda_2 + \lambda_3 = 0$, $3\lambda_2 + 6\lambda_3 = 0$
 - (d) $2\lambda_1 7\lambda_2 + \lambda_3 = 0$, $3\lambda_2 6\lambda_3 = 0$
- 139. If the graph has no self-loop, then the sum of all entries in any row or column is
 - (a) half of the degree of vertex corresponding to that row or column
 - (b) less than to the degree of vertex corresponding to that row or column
 - (c) greater than to the degree of vertex corresponding to that row or column
 - (d) equal to the degree of vertex corresponding to that row or column

140.	Eve	ry tree	with two or	mo	re ver	tices i	is							
	(a)	5-chro	omatic											
	(b)	4-chro	omatic											
	(c)	2-chro	omatic											
	(d)	3-chro	omatic											
												63		
141.	A g	raph is	totally disco	nne	ected	if and	only	if						
	(a)	its ad	jacency mati	ix:	is a u	nit m	atrix							
	(b)	its ad	jacency mati	rix	is a z	ero m	atrix							
	(c)	its ad	jacency mati	rix	is a d	iagona	al mat	trix						
	(d)	its ad	jacency matr	rix	is ske	w syn	nmetri	ic	9					
142.	Let	u and	υ be distinct	ve	rtices	of a t	ree, tl	hen	11					
	(a)	there	is no path f	ron	u to	υ								
	(b)	there	are exactly	thre	ee pat	hs fro	m u t	ου					5	
	(c)	there	are exactly	two	path	s from	u to	υ						
	(d)	there	is a unique	pa	th fro	m u to	υ					1 %		
143.		stude	nts got the	foll	owing	mark	rs in	mathe	matic	s and	econo	omics	in en	d-sem
	St	udents		:	1	2	3	4	5	6	7	8	9	10
	Mo	arks in	Economics	;	78	36	98	25	75	82	90	62	65	39
	Me	arks in	Mathematics	0	81	51	91	60	68	62	86	58	53	47
			rank correlat	ion	coinc	ident	is	20 =						
	(a)	-1												
	(b)	0												
	(c)	0.818	2											
	(d)	1												

- 144. Degeneracy at any iteration can be removed by placing ϵ (where $\epsilon \to 0$) in an unoccupied cell which
 - (a) has the least cost
 - (b) is an independent cell, beginning with which a closed path cannot be drawn
 - (c) is an independent cell, beginning with which a closed path can be drawn
 - (d) has the largest cost
- 145. Mean and variance of geometric distribution are
 - (a) q/p and q/p^3
 - (b) q^2/p and q/p^2
 - (c) q^2/p and q^2/p^2
 - (d) q/p and q/p^2
- 146. What is the expectation of the number of failures preceding the first success in an infinite series of independent trials with constant probability p of success in each trial?
 - (a) q^2/p
 - (b) p/q
 - (c) q/p
 - (d) q/p^2
- 147. A disease is present in 10% of population and a diagnostic test designed to detect this disease does not always detect correctly. The table below shows the proportion of times that the test produces various results:

Disease	Positive	Negative
Present (D)	0.08	0.02
Absent (\overline{D})	0.05	0.85

Find the proportion of times the disease is present when the test is negative.

- (a) 0.067
- (b) 0.023
- (c) '0·50
- (d) 0.25

- 148. The value of \$\beta_2\$ gives a measure of kurtosis of a curve, then we have
 - (a) for normal curve $\beta_2 < 3$, for leptokurtic curve $\beta_2 > 3$ and for platykurtic curve $\beta_2 = 3$
 - (b) for normal curve $\beta_2 = 3$, for leptokurtic curve $\beta_2 > 3$ and for platykurtic curve $\beta_2 < -3$
 - (c) for normal curve $\beta_2 = 3$, for leptokurtic curve $\beta_2 > 3$ and for platykurtic curve $\beta_2 < 3$
 - (d) for normal curve $\beta_2 < 3$, for leptokurtic curve $\beta_2 = 3$ and for platykurtic curve $\beta_2 > 3$
- 149. Let X_1, X_2, X_3, \cdots be a sequence of independent and identically distributed (i.i.d.) random variables each having expected value μ and standard deviation σ . Then for any $\epsilon > 0$

(a)
$$\lim_{n \to \infty} P\left\{ \left| \frac{X_1 + X_2 + X_3 + \cdots}{n} - \mu \right| < \varepsilon \right\} = 0$$

(b)
$$\lim_{n\to\infty} P\left\{ \left| \frac{X_1 + X_2 + X_3 + \dots + X_n}{n} - \mu \right| > \varepsilon \right\} = 0$$

(c)
$$\lim_{n \to \infty} P\left\{ \left| \frac{X_1 - X_2 - X_3 - \dots - X_n}{n} - \mu \right| > \varepsilon \right\} = 0$$

(d)
$$\lim_{n\to\infty} P\left\{ \left| \frac{X_1 + X_2 + X_3 + \dots + X_n}{n} + \mu \right| > \varepsilon \right\} > 0$$

150. Let X be a continuous random variable with the parameters μ and σ . Then probability density function for normal variate is given by

(a)
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-1}{2}\left(\frac{x-\mu}{\sigma}\right)}, -\infty < x < \infty$$

(b)
$$f(x) = \frac{1}{\sigma \sqrt{\pi}} e^{\frac{-1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty$$

(c)
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-1}{2}(\frac{x-\mu}{\sigma})^2}, -\infty < x < \infty$$

(d)
$$f(x) = \frac{1}{\sigma\sqrt{2}}e^{\frac{-1}{2}(\frac{x-\mu}{\sigma})^2}, -\infty < x < \infty$$

/258-A

pied

his

TRACK-II

156

157

15

LIFE SCIENCES/BIOINFORMATICS

PART-A

(Common for Track-II)

- 151. What do you understand by heterochromatin?
 - (a) Highly condensed state of DNA present at centromeres and telomeres
 - (b) Highly transcriptionally active form of DNA
 - (c) Highly supercoiled form of DNA that does not contain any genes
 - (d) DNA segment that helps in the attachment of genetic material with cell membrane
- 152. Post-translational modifications of proteins are not required for
 - (a) localization of proteins
 - (b) natural functioning of proteins
 - (c) correct folding of a protein
 - (d) sequencing of a protein
- 153. During DNA replication in bacteria, which of the following enzymes is responsible for removing RNA primers?
 - (a) DNA polymerase I
 - (b) DNA polymerase II
 - (c) DNA polymerase III
 - (d) Ligase
- 154. What will be the sequence of polypeptide coded by an RNA sequence?

 "AUGAAAGACGGGUGA"
 - (a) MKDG
 - (b) MKDGC
 - (c) IKDG
 - (d) IKDGC
- 155. During which of the following phases of cell cycle, DNA replication occurs?
 - (a) G1 phase
 - (b) G2 phase
 - (c) S phase
 - (d) M phase

/258-A

- 156. What is a bibliography?
 - (a) List of all the authors along with their affiliations
 - (b) A detailed description of a person's life
 - (c) A detailed description of methods used in developing a scientific tool
 - (d) List of all the sources used in writing a research article
- 157. Which of the following is used to work with BSL-4 pathogenic agents?
 - (a) Class I biosafety cabinet
 - (b) Class II biosafety cabinet
 - (c) Class III biosafety cabinet
 - (d) Class IV biosafety cabinet
- 158. Why plants look green?

for

- (a) Because chlorophyll absorbs green color
- (b) Because chlorophyll has a chemical which is green in color
- (c) Because chlorophyll absorbs red and blue light
- (d) Because chloroplasts have their own DNA
- 159. Vinegar is produced by the fermentation of sugars by yeast and
 - (a) lactobacillus
 - (b) bacillus
 - (c) streptococcus
 - (d) acetobacter
- 160. The cell elongation in stem internodes takes place due to
 - (a) gibberellin
 - (b) silicon
 - (c) auxin
 - (d) brassinosteroid

/258-A

39

[P.T.O.

161.	In the secondary structure of a pro- for alpha helix formation?	otein, which of the following is th	ne main force required	166
	(a) Disulphide bond			
	(b) Ionic interaction			
	(c) Hydrogen bond			
	(d) Hydrophobic interaction			
162.	The only genetically modified cro	pp/food plant approved in India	a is	167
	(a) golden rice			
	(b) Bt brinjal			
	(c) Bt tomato			
	(d) Bt cotton			
	The second secon	1		168
163.	Post-transcriptional gene silencing	ng is mediated by		
	(a) mRNA			
	(b) siRNA			
	(c) sense RNA			
	(d) rRNA '			
164.	The sedimentation coefficient of l	arge subunit of ribosome isolate	d from chloroplast is	169
	(a) 40S	7.		
	(b) 30S			
	(c) 50S			
	(d) 20S			
			*	
165.	A degenerate primer is generall	y designed from a/an		170
	(a) DNA sequence			
	(b) amino acid sequence		0 V (d)	
45	(c) RNA sequence			
	(d) cDNA sequence			
/25	8-A	40		/25
				Part and the

166.	Du	ring transcription, the strand which has the duced, is	sam	e nucleo	tide se	quence	as the	mRN/
	(a)	anti-sense strand						
	(b)	coding strand						
	(c)	non-sense strand						
	(d)	sense strand				*		
167.	Wh	ich of the following is not a sequence alig	gnmei	nt progr	am/alg	orithm	·	
	(a)	FASTA						
	(b)	BLAST						
	(c)	Needle						
	(d)	Modeller						
168.	Whi	ich of the following is not a secondary struct	ture o	of protein	ns as de	fined b	v DSSP	2
	(a)	Alpha helix				, 8		
	(b)	Beta strand						
	(c)	Kink						
	(d)	Pi helix						
169.	In a	a regular DNA helix, which of the following	g sta	tements	is not	correc	t?	11/9/1
	(a)	Number of a Gua and Cyt is equal.						
	(b)	Number of Ade and Thy is equal.						
	(c)	Number of Gua and Thy is equal.			65			
	(d)	G—C bond is stronger than A—T bond.		.,				
170.	Whi	ch of the following can model non-additiv	e pro	perties	of a pr	edictive	mode	?
	(a)	Linear regression			2.4			
	(b)	Support vector machine with linear kern	nel	e 1 5				
	(c)	Neural networks with one hidden layer		2 3				
	(d)	All of the above						

41

*[P.T.O.

/258-A

	¥				
171.	The prediction models trained performance but fail to make us called	on a small numb eful predictions for i	per of data po new data sets.	ints show a h Such a situation	igh n is
	(a) overfitting				
	(b) under-learning				
	(c) training failure				
	(d) feature redundancy		Î		
172.	Which of the following is the m structures?	nost crucial step of	comparative m	odeling of prot	ein
	(a) Template identification				
	(b) Energy minimization				
	(c) Side-chain orientation				
	(d) Visualization of the modele	ed structure			
173.	Which of the following serves as	s a substitution ma	trix for sequence	ce alignment?	
	(a) Adjacency matrix				
	(b) BLOSUM62				
	(c) Contact matrix				
	(d) Confusion matrix				
174.	Which of the following can form sequence or composition?	maximum number o	of structures wi	thout changing	the
	(a) Proteins				
	(b) . DNAs				
	(c) Carbohydrates				
	(d) Esters				
175.	Galaxy in bioinformatics most 1	ikely means			
	(a) a web server for genome d	lata analysis			
	(b) a collection of desktop soft	tware applications			
	(c) a web repository of bioinfo	ormatics tools			
	(d) a seminar in which both t	biologists and inform	nation scientist	s take part	
	1.4				

176.	Sul	omission to GenBank is done	using				
	(a)	Bankit and Sequin					
	(b)	Bankit and Bankin					
	(c)	Sequin and Bankin		1.2			
	(d)	Entrez					
177.	Fly	Base is a			¥		
	(a)	biodiversity database					e 11
	(b)	model organism database					
	(c)	literature database					
	(d)	biomolecular database					
178.	Rib	osomes are composed of			7		
	(a)	DNA and RNA					
	(b)	RNA and proteins					
	(c)	DNA and proteins					
	(d)	RNA only					
179.		ich of the following nucleotid	e sequences	conta	ins four py	rimidin	e bases?
	(a)	GATCAATGC					
	(b)	UAGCGGUAA					0
	(c)	GCUAGACAA			8 8		
	(d)	Both (b) and (c)					
180.	Inde	ependently folded functional	unit of a pro	tein is	s called		
	(a)	motif	F 2 5				
	(b)	fold			0		

domain

module

PART-B

Section-I

(Life Sciences/Biotechnology)

- 181. Which of the following is not true about alternative splicing?
 - (a) One gene can code for multiple proteins
 - (b) A particular exon may be included or excluded from processed mRNA
 - (c) A particular intron may be included or excluded from processed mRNA
 - (d) A stop codon is introduced after exons join together
- 182. Which of the following is not patentable in India?
 - (a) Genetically modified animal
 - (b) Process used for genetic modification
 - (c) Gene used for genetic modification
 - (d) Therapeutic drug
- 183. Which of the following is not an example of plagiarism?
 - (a) Rewriting somebody else's lines without citing the source
 - (b) Copying your own lines from a previously published manuscript with proper citation
 - (c) Copying the lines as such from multiple papers to write one paragraph and then citing all of them
 - (d) Using quotations to write a line copied from another paper and citing the source
- 184. What is the natural function of CRISPR-Cas system in bacteria?
 - (a) Repair mutations introduced during DNA replication
 - (b) Confer resistance to phages
 - (c) Help in recombination during crossing-over
 - (d) Introduce beneficial mutations
- 185. Which of the following is normally not present in plant cell walls?
 - (a) Lignin
 - (b) Cellulose
 - (c) Hemicellulose
 - (d) Chitin

186.	Which of the follo	owing is not a grass o	f family Poaceae?						
	(a) Rice	9 H							
	(b) Maize			22					
	(c) Quinoa								
	(d) Sorghum			*					
187.		oduced offspring is							
		identical to the parent							
	(b) genetically	different from the pare	ent plant						
		better than the parent							
	(d) genetically	worse than the parent	plant						
188.	DNA polymorph	ism can be present							
	(a) anywhere i	n genome							
	(b) only in coo	ling regions							
	(c) in active p	art of genome							
	(d) only in no	n-coding part of genor	ne						
189.	Methylation of	a DNA segment typica	lly						
	(a) activates	gene expression							
	(b) suppresse	s gene expression			*1				
	(c) alters DNA	A sequence							
	(d) alters pro	tein coded by that seg	ment						
190.	Which of the fe	ollowing is not true al	oout microarrays?	Q 1	an University				
	(a) Microarra	ys can determine expr	ession of thousands	of genes simu	Itaneously.				
	(b) Microarrays can be used to study gene expression in an organism for which no sequence information is known.								
	(c) Microarra	ys can be used to det	ermine expression p	atterns of splic	cing variants.				
	(d) Microarra	ys cannot be used for	identifying promote	r elements.					
191	After RNA extr	action from flowers, Red's. What do they corre	eema performed gel e espond to?	lectrophoresis	and could see				
	(a) 50S and	30S RNA							

(b)

(c)

(d)

18S and 5S RNA

60S and 40S RNA

28S and 18S RNA

per

hen

- 192. Natural antisense transcripts are
 - (a) altered transcripts created due to natural mutations
 - (b) transcripts that can code for more than one protein
 - (c) complementary to other RNA transcripts
 - (d) complementary to only the transcripts of housekeeping genes
- 193. You had developed a novel method and published it in an open access journal. After five years, you realized that your method can have huge industrial application. Can you now patent it?
 - (a) Yes, but only for half than normal period for which patent is granted.
 - (b) No, because the applications of the method were not revealed at the time of discovery.
 - (c) No, because information is already in public domain.
 - (d) Yes, but you will have to retract the publication.
- 194. Dr. Neil sequenced the genome of a rare form of fish and annotated 50000 transcripts from it. Reviewers asked him to experimentally validate the transcripts. Which approach should Dr. Neil use?
 - (a) Southern blotting
 - (b) RNA sequencing
 - (c) Increase sequencing coverage
 - (d) Chromatin immunoprecipitation
- 195. How can one sterilize antibiotics?
 - (a) By autoclaving
 - (b) By filter sterilization
 - (c) By dissolving them in ethanol
 - (d) By incubating them at 100 °C for 5 minutes
- 196. · Nucleosomes are not found in
 - (a) Escherichia coli
 - (b) Saccharomyces cerevisiae
 - (c) Entamoeba histolytica
 - (d) Trypanosoma brucei

197.	Qua	ntitative RT-PCR is used to			
	(a)	determine gene sequence			
	(b)	amplify RNA sequence			
	(c)	amplify DNA sequence			
	(d)	determine gene expression	ž i	n =	á
198.	Part a pl	icular RNAs that are important ant embryo. This can be most	for the development directly demonstrat	are located in dist	inct region of
	(a)	Northern blotting			
	(b)	in situ hybridization			
	(c)	in vitro transcription			
	(d)	Western blotting		75.	
199.	Whi	ch one of the following does no	t represent next-gene	ration sequencing	technology?
	(a)	Affymetrix GeneChip			1
	(b)	Roche 454			
	(c)	Illumina			
	(d)	SOLiD			
200.	Aar	obacterium tumefaciens produc	es crown gall diseas	e in	
	(a)	monocotyledonous plants			
	(b)	dicotyledonous plants			*
	(c)	gymnosperms			
V	(d)	angiosperms			
201.	Wh	ich of the following chemicals	is used for inducing	g polyploidy?	
	(a)	Colchicine	239760 - 10 10 4	561 (S15): U.S.	
	(b)	Ethyl methanesulfonate			
	(c)	Methyl methanesulfonate			
	(d)	2 WORDS Exposure Control of the Cont			
	4			and the same of th	
202.	. cDl	NA libraries are constructed us	sing which of the fol	llowing vectors?	
	(a)	Phagemid			
	(b)	Plasmid			
	(c)	YAC			
	(d)	BAC			
/258	-A		47		[P.T.O.

203	The square root of variance	of sample mean represents	
	(a) mean deviation	Topicsents	
	(b) standard error		
	(c) median		
	(d) standard deviation		
204.			
204.	Seed dormancy is due to whi	ich of the following plant hormon	es?
	(a) Abscisic acid		
	(b) Auxin		
	(c) Ethylene		
	(d) Cytokinin		
205.	A gene with		
	A gene with more than one al	llele is termed as	
	(a) heterologous		
	(b) hybrid		
	(c) pleiotropic		
	(d) polymorphic		
206.	Homologous genes in different	enecies having	
	(a) .orthologues	species having similar functions	are known as
	(b) paralogues		in the second
	(c) isozymes		
	(d) biochemical variants		
207.	LOD scores are used to predict	t which of the following?	
	(a) Crossover frequency		
	(b) Gene sequence		
	(c) Gene linkage		
	(d) Number of genes involved	in the determination of a given p	
208.			nenotype
208.	Which of the following is odd or	ne?	expense = la
	(a) Enhancer		
	(b) Copia elements		
	(c) Retrotransposons		
	(d) FB elements		
258-A		48	
		10	

209.	W	hich of the following can be used as sequence similarity search tool?
	(a)	
	(b)	PHYLIP
	(c)	BLASTX
	(d)	PYMOL
210.	ТВ	LASTN refers to which of the following sequence similarity searches?
	(a)	
	(b)	Nucleotide against protein
	(c)	Protein against nucleotide
	(d)	Protein against protein
211.	Wh	nich of the following does not represent a molecular marker?
	(a)	SNP
	(b)	SSR
	(c)	PEG
	(d)	RAPD
212.	Wh	nich of the following does not represent a sequence format?
	(a)	FASTA
	(b)	FASTQ
	(c)	GFF
	(d)	SFF
213.	Wh	ich of the following represents an epigenetic modification?
	(a)	Ubiquitination
	(b)	Glycosylation
	(c)	Histone acetylation
	(d)	Sumoylation
214.	Gen	nes that are inactive for long periods of time tend to be bound to
	(a)	each other
	(b)	methyl groups
	(c)	actin and myosin
	(d)	nucleolus

		(d)	lack vascular cambium	Hall .			
	216.	For	protein detection, most con	nmonly used probe is			4
		(a)	antibody				
		(b)	lectins				
	98	(c)	antigens				
		(d)	interferons	×.			
	217.		separation technique of cha called	arged molecules under the	e influence of elec	tric c	urrer
		(a)	colony hybridization		130		
		(b)	electrophoresis				
		(c)	dot blot technique				
		(d)	Western blotting				
	218.	Gro	wth hormone producing ap	ical dominance is			
		(a)	gibberellin				
		(b)	auxin		25.8		
		(c)	ethylene				
		(d)	cytokinin	la la			
	219.	Lite	erature databases include				
		(a)	Medline and PubMed				
		(b)	Medline and PDB				
		(c)	PubMed and PDB				
		(d)	Medline and PDS			1.0	
	220.	The	e enzyme used in SOLiD se	quencing technology is			
		(a)	sequenase		241 50		
		(b)	DNA polymerase				
		(c).	DNA ligase				
		(d)	Taq polymerase				
			* 1				
	/258	-A		50		Ties	
	- 13						
-		-		The state of the s			

Grafting is not possible in monocots, because they

have scattered vascular bundles

have parallel venation

are herbaceous

215.

(b)

(c)

Section-II

(Bioinformatics)

- 221. Burrows-Wheeler transform is associated with
 - (a) protein secondary structure prediction
 - (b) Next-generation Sequencing (NGS) data analysis
 - (c) sequence logos
 - (d) phylogenetic tree visualisation
- 222. Which of the following databases is a repository for transcription measurement expression data derived from micro-arrays or RNA-seq experiments?
 - (a) GEO
 - (b) PDB
 - (c) GenBank
 - (d) TrEMBL
- 223. Which of the following statements is not correct?
 - (a) BLOSUM (Blocks Substitution Matrix) is a scoring matrix for sequence alignment derived from closely related global alignments in the BLOCKS database. The BLOSUM62 matrix is derived from alignments containing 62% identity, and is most commonly used.
 - (b) PET91 (Pair Exchange table for the year 1991) was developed by Jones, Taylor and Thornton and derived from sequences clustered at 85% similarity from 2621 protein families. It corrects for mutations that were poorly represented in the original Dayhoff matrix.
 - (c) PAM (Percentage Accepted Mutation) matrix is derived from PAM1 which estimates the rate at which 1% of amino acids are mutated. PAM250 is derived by multiplying this matrix by itself 250 times. The PAM alignments are based on stretches of local alignments forbidden to contain gaps.
 - (d) The BLOSUM and PAM matrices can be used interchangeably, with the higher number in both used for scoring sequences which are less divergent. Typically, BLOSUM90 and PAM250 are used for detecting nearly identical sequences, while BLOSUM45 and PAM100 are used for weak similarities.

The following dynamic programming recurrence equation is used in which algorithm? 224.

$$H_{ij} = \max \begin{cases} H_{i-1, j-1} + S(a_i, b_j) \\ H_{i-1, j} - W \\ H_{i, j-1} - W \\ 0 \end{cases}$$

where $S(a_i, b_j)$ is the score of aligning a_i and b_j ; W is the gap penalty.

- Needleman-Wunsch global alignment (a)
- Basic Local Alignment Search Tool (BLAST) (b)
- Smith-Waterman local alignment (c)
- Profile hidden Markov models as implemented by HMMER (d)
- Match the following multiple alignment methods with the statements that best describe 225.
 - 1. Muscle
 - MAFFT
 - 3. ClustalW
 - 4. T-Cofee
 - is a progressive alignment method which requires two stages : a first stage in (i) which the relationships between the sequences are represented as a tree, called a guide tree, and a second stage in which the MSA is built by adding the sequences sequentially to the growing MSA according to the guide tree
 - is an iterative method that uses a distance measure to assess the relatedness of two sequences. The distance measure is updated between iterations
 - based on the fast Fourier transform, can align large numbers of sequences. Recent versions also have a range of methods with more accuracy for small numbers of
 - (iv) is a progressive method, which in addition to a guide tree can optimise local alignments using secondary structure and library extension
 - 1-(i), 2-(iii), 3-(iv), 4-(ii)
 - 1-(ii), 2-(iii), 3-(iv), 4-(i)
 - 1-fii), 2-fiii), 3-fi), 4-fiv)
 - (d) 1-(i), 2-(ii), 3-(iii), 4-(iv)

- Given that S is the bit score, m is the length of the query, n is the length of the database sequence, k and (λ) are parameters for the extreme-value distribution for the search space and scoring space respectively. The correct expression for the E-value is
 - (a) $E = Sm.n.e^{k\lambda}$
 - (b) $E = k, m, n, e^{-2S\lambda}$
 - (c) $E = k \lambda S e^{m \cdot n}$
 - (d) $E = S k. \lambda. e^{m.n}$
- 227. Which of the following methods is used to align protein structures?
 - (a) DALI (Distance Alignment Matrix Method)
 - (b) BLAST (Basic Local Alignment Search Tool)
 - (c) Smith-Waterman Local Alignment
 - (d) AutoDock Vina
- 228. The following sequence of steps is typically used in homology modelling: find template—align subject with template—model core (backbone)—model loops—model side-chains—check the whole model.

Which program contains functions/routines that can perform all the above steps?

- (a) Visual Molecular Dynamics
- (b) SWISSPRÓT
- (c) Modeller
- (d) CE (Combinatorial Extension)
- Protein structures are managed and distributed by which of the following consortiums?
 - (a) European Molecular Biology Laboratory
 - (b) National Institutes of Health, USA
 - (c) Brookhaven National Laboratory's research collaboratory for structural bioinformatics
 - (d) wwPDB-World Wide Protein Data Bank Foundation
- 230. Pymol is a commonly used open-source program used in bioinformatics for
 - (a) the use in python libraries for sequence analysis
 - (b) parsing BLAST results
 - (c) molecular visualisation
 - (d) deep learning

- 231. Which of the following equations is commonly used to calculate the van der Waals energy in a force field (where r is the distance between the two atom centers, c1 and c2 are the charges on each respectively, and θ is the bond angle)?
 - (a) $\Sigma k(\theta_i \theta_0)$
 - (b) $\frac{c1c2}{r}$
 - (c) $\left(\frac{1}{r}\right)^{12} \left(\frac{\gamma}{r}\right)^6$
 - (d) $\frac{1}{r} + \frac{1}{\theta} + \frac{1}{c1c2}$
- 232. Which of the following Perl commands would replace the substring ATG with AUG in a DNA sequence stored in the string \$seq?
 - (a) \$seq=~s/AUG/ATG/gi
 - (b) @count=\$seq=~/ATG/gi; scalar(@count)
 - (c) \$count=\$seq=~/ATG/gi
 - (d) \$seq=~s/ATG/AUG/gi
- 233. The SDF file formats used for representing chemicals is best described by which of the following descriptions?
 - (a) Single line notation for molecules. These strings include connectivity but do not include 2D or 3D coordinates. Hydrogen atoms are not represented. Other atoms are represented by their element symbols B, C, N, O, F, P, S, Cl, Br and I
 - (b) Contains layers and sub-layers separated by a delimeter. The main layer contains the chemical formula, atom connections and hydrogen atoms. Other layers include the charge, stereochemical and isotopic layers
 - (c) Contains some header information, the Connection Table (CT) containing atom info, then bond connections and types, followed by sections for more complex information
 - (d) Contains only heavy atoms with their coordinate information specified by an ATOM header, followed by connectivity information in rows labelled CONNECT

- 234. The scoring function for the docking program AutoDock Vina is
 - (a) a force field based function to predict binding energy, based on the summation of the van der Waals and electrostatic functions
 - (b) an empirical function based on counting the number of various types of interactions between the two binding partners
 - (c) a knowledge-based function derived from statistical observations of intermolecular close contacts in large 3D databases
 - (d) a combination of knowledge-based potentials and empirical scoring functions: it extracts empirical information from both the conformational preferences of the receptor-ligand complexes and the experimental affinity measurements
- 235. ADME-Tox is an abbreviation of
 - (a) Adsorbtion, Desorbtion, Metabolism, Excretion and Toxicity
 - (b) Absorption, Distribution, Metabolism, Excretion and Toxicity
 - (c) Adsorbtion, Delivery, Metabolism, Excretion and Toxicity
 - (d) Absorbtion, Delivery, Metabolism, Exclusion and Toxicity
- The algorithm used in the gene prediction programs GenScan, GeneMark and Glimmer are
 - (a) based on support vector machines trained using standard genes and non-coding sequences
 - (b) based on hidden or interpolated Markov models of gene structure
 - (c) modifications of the fast Fourier transform
 - (d) based on signals such as the start and stop codons and splice site signals
- In RNA-Seq analysis, the abundance of RNA is estimated using the normalised measure FPKM. This is
 - (a) fragments of transcript per kilobase per million reads
 - (b) fragments per kilobase reads per million base pairs
 - (c) fragments per kilobase of exon per million reads mapped
 - (d) fragments per kilobase nucleotides per million reads
- The model that uses different values for transversions and transitions in phylogenetic analysis is
 - (a) Kimura model
 - (b) Jukes-Cantor model
 - (c) Jones-Taylor-Thornton model
 - (d) Felsenstein model

- 239. Match the following methods commonly used in phylogenetic analysis with their descriptions:
 - UPGMA
 - 2. Maximum Parsimony
 - Neighbour-Joining
 - 4. Maximum likelihood
 - (i) distance-based and uses sequential clustering to build a rooted phylogenetic tree
 - (ii) distance matrix based taking and examining all possible pairs to find the combination of pairs that minimizes the total length of the phylogenetic tree
 - (iii) character-based method that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data
 - (iv) character-based method and uses a stochastic model that gives the probability of a particular character changing at any given point on a tree
 - (a) 1-(ii), 2-(iii), 3-(iv), 4-(i)
 - (b) 1-(i), 2-(iii), 3-(ii), 4-(iv)
 - (c) 1-(ii), 2-(iv), 3-(i), 4-(iii)
 - (d) 1-(i), 2-(ii), 3-(iii), 4-(iv)
- 240. A protein-protein interaction network is defined as scale-free. Which of the following statements is correct about such a network?
 - (a) The degree distribution follows a power law
 - (b) The degree distribution is linear
 - (c) The degree distribution is dependent on the number of nodes in the network
 - (d) The degree distribution approximates a normal distribution
- 241. Profile hidden Markov models are models of protein families derived from multiple alignments. A hidden Markov model is made up of states—for the profile hidden Markov model, these correspond to the match, delete and insert states for each column in the multiple alignment. In addition, the model has transition probabilities between the states, and state emission probabilities which are
 - (a) the probabilities of a state occurring in a particular column
 - (b) the probabilities of amino acids in each state
 - (c) the probabilities of a state being modelled as an error
 - (d) the probabilities of a state being converted into another state

- For the pairwise alignment using local dynamic programming strategy, which one of the following is true?
 - (a) The traceback starts from the first cell of the score matrix to the last cell
 - (b) The traceback starts from the last cell of the score matrix to the first cell
 - (c) The traceback starts from the cell having the highest score to the cell having a score of zero
 - (d) The traceback starts from anywhere to anywhere
- It is known that 'uncertainty' measured by Shannon's information theoretic method is maximum when conditions are equally likely or highly variable. In the context of a DNA multiple sequence alignment, uncertainty at the fully conserved position is
 - (a) less than zero
 - (b) zero
 - (c) unity
 - (d) between zero and one
- One of the benchmark performance measures called specificity is given by
 - (a) TN/(TP+FN)
 - (b) TP/(TP+FN)
 - (c) TN/(TN+FP)
 - (d) TP/(TN+TP)
- The term 'kernel function' is associated with
 - (a) multilayer perceptron
 - (b) Baysian network
 - (c) support vector machine
 - (d) hidden Markov model
- Relative entropy is also referred to as
 - (a) Shannon entropy
 - (b) Renyi entropy
 - (c) Kullback-Leibler entropy
 - (d) Tsallis entropy

247.	A researcher has sequenced the genome of a rare fish using platform technology. Which of the following steps is essential for it sequencing data?	g illumina sequencing nitial processing of the
	(a) Adaptor trimming	
	(b) Removing reads longer than 200 bp	
	(c) Aligning reads to entries in miRBase	

- (a) Expression of isoforms
- (b) Single nucleotide polymorphism in coding regions

Filter reads containing radioactive labels

- (c) Expression of very low expressed genes
- (d) Regulatory elements in promoter region
- 249. In an RNA sequencing data obtained from kidney tissue, a researcher observed read count of 10 for a 10 kb gene A and read count of 5 for a 5 kb gene B. Which of the following should be most plausible interpretation?
 - (a) Gene A has higher expression than Gene B in kidney tissue
 - (b) Gene B has higher expression than gene A in kidney tissue
 - (c) None of the genes A or B is kidney-specific
 - (d) Both the genes likely express at similar level in kidney tissue
- 250. What would be the amount of possible k-mers for a string of length L?
 - (a) L + k 2
 - (b) L/k
 - (c) L-k+1
 - (d) 4L

- 251. A genome was sequenced to 30X sequencing depth to achieve a coverage of 95%. Which of the following statements will be true?
 - (a) Only 30% of the genome is represented in total sequence obtained.
 - (b) 95% of total genes is represented in the total sequence obtained.
 - (c) Only 30% of the total genes is represented in the sequence obtained.
 - (d) 95% of the genome is represented in total sequence obtained.
- 252. Which of the following projects would be best suited for next-generation sequencing?
 - (a) To determine if a tumour sample contains a common missense mutation
 - (b) To find the transcriptome of a tumour sample
 - (c) To genotype ten genomic DNA samples for a known single nucleotide polymorphism
 - (d) All of the above
- Once the sequences are obtained from your next-generation sequencing experiment, what is the first thing you should do?
 - (a) Perform a bioinformatics analysis of your data.
 - (b) Check your data using a quality control method/tool.
 - (c) Publish your results.
 - (d) Further investigate the sequences of interest.
- Protein-coding genes can be identified by
 - (a) transposon tagging
 - (b) ORF scanning
 - (c) blotting
 - (d) nuclease S1 mapping
- Which file format is used for storing the sequence data of assembled genomes (draft and finished)?
 - (a) Sanger format
 - (b) FASTQ format
 - (c) FASTA format
 - (d) ASCII format

256.	Wh	ich of the following abase?	program s	uites is us	sed to build an	d query the popular	PFAN
	(a)	SAM Tools					
	(b)	HHSearch					
	(c)	HMMER '			25		
	(d)	BLAST			(a)		
257.	The	odds score or odd:	s ratio is				13
	(a)	ratio between the	lengths of	two genon	nes in compara	ative genomics	
	(b)	ratio of the state					
	(c)					robability of an eve	nt
	(d)	None of the above				100 Mary 100	
258.	Whi	ch of the following	programs o	commonly ics simula	used in studyi tions?	ng bimolecular stru	ctures
	(a)	GROMACS					
	(b)	CHARMM					
	(c)	AMBER				-8.104	
	(d)	DALI					
259.	Whi	ch of the following	methods/al	lgorithms	is not used for	energy minimisatio	n?
	(a)	Newton-Raphson				all neg	
	(b)	Conjugate Gradien	ıt				
	(c)	Ewald Summation					
	(d)	Steepest Descent					
260.	Mos	t drug receptors are					
	(a)	small molecules w	ith a molec	ular weigh	nt between 100	and 1000	
	(b)	lipids arranged in	38				
	(c)	proteins located or					
	(d)	DNA molecules		country translations with	ecoutoriores de Marine Total		
	2006						25.110

TRACK-III

ENGINEERING SCIENCES

PART-A

(Common for Track-III)

- 261. Convert the decimal number 379₁₀ to BCD.
 - (a) 001001100110
 - (b) 001101111001
 - (c) 001000000001
 - (d) 111110010011
- 262. Simplify the following Boolean expression:

$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

- (a) C
 - (b) B
 - (c) 0
 - (d) 1
- 263. Address range of memory, which can be connected with 8085 microprocessor, is
 - (a) 0000 H-1111 H
 - (b) 0000 H-FFFF H
 - (c) 00 H-FF H
 - (d) 000 H-FFF H
- 264. Calculate the capacity of a standard 4-kHz telephone channel with a 32-dB signal-to-noise ratio.
 - (a) 37216 bits per second
 - (b) 66448 bits per second
 - (c) 32953 bits per second
 - (d) 32359 bits per second

- 265. Define the terms 'apogee' and 'perigee' respectively. The path traced out on the earth's surface directly below and above the satellite The point where the orbit crosses the equatorial plane going from south to north (b) and north to south respectively The point farthest from the earth and closest to the earth respectively The line joining ascending to descending nodes and descending to ascending nodes through the centre of the earth respectively
- In a certain medium, $E = 10\cos(10^8t 3y)a_x$ V/m. What type of medium is it? 266.
 - Free space (a)
 - (b) Lossy dielectric
 - Lossless dielectric (c)
 - Perfect conductor (d)
- A lossless transmission line with $Z_0 = 50$ ohm is 30 m long and operates at 2 MHz. The 267. line is terminated with a load $Z_L = 60 + j40$ ohm. If u = 0.6c on the line, find the s.
 - (a) 2.088
 - (b) 1.25
 - (c) 1.6
 - (d) 4.865
- 268. Rise-time bandwidth characteristics for a photodiode with a rise time of 2 ns and a capacitance of 3 pF would be
 - (a) 195 MHz
 - (b) 275 MHz '
 - (c) 150 MHz
 - 175 MHz (d)
- 269. An antenna located in a city is a source of radio waves. How much time does it take the waves to reach a town 12000 km away?
 - (a) 20 µs
 - (b) 40 ms
 - (c) 36 s
 - (d) 20 ms

270. The radiation intensity of a certain antenna is

$$U(\theta, \phi) = \begin{cases} 2\sin\theta \sin^3\phi, & 0 \le \theta \le \pi, \ 0 \le \phi \le \pi \\ 0, & \text{elsewhere} \end{cases}$$

Determine the directivity of the antenna.

- (a) 6
- (b) 20.94
- (c) 16·53
- (d) 2·546

271. A quarter-wave monopole antenna operating in air at frequency 1 MHz must have an overall length of

- (a) 150 m
- (b) $L \ll \lambda$
- (c) 75 m
- (d) $L \gg \lambda$

272. Which of the following belongs to the first generation of computers?

- (a) ENIAC
- (b) UNIVAC
- (c) IBM 8090
- (d) IBM 1401

273. Device that includes the ALU, register arrays and control circuits on a single chip using LSI techniques along with input device, output device and memory is called

- (a) microcontroller
- (b) microcomputer
- (c) microprocessor
- (d) central processing unit

274.	The time	required	to	complete	one	clock	to	execute	an	instruction	in	opcode	fetch
	operation	is called								13			

- (a) instruction cycle
- (b) machine cycle
- (c) opcode fetch machine cycle
- (d) T-state

275. The operation a = a * b + a can also be written as

- (a) a = (b + 1) * a;
- (b) (a * b)! = (b + a);
- (c) a * = b + a;
- (d) a = (b + a) * 1;

276. What will be the time complexity of the following expression?

$$\frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{4}$$

- (a) $O(n^2)$
- (b) $O(n^1)$
- (c) $O(n^3)$
- (d) $O(n^4)$

277. A process utilizes a resource in the sequence

- (a) request, use, release
- (b) use, request, release
- (c) use, release, request
- (d) request, release, use

278. Four necessary conditions for deadlock to exist are mutual exclusion, no pre-emption, circular wait and

- (a) multiprogramming
- (b) hold and wait
- (c) race-around condition
- (d) buffer flow

- 279. The family of WLANs like Ethernet meets the IEEE standard
 - (a) 802.10
 - (b) 802.11
 - (c) 802.15
 - (d) 802.12
- 280. Which of the following networks meets the IEEE standard 802.15.6?
 - (a) WPAN
 - (b) WLAN
 - (c) WMAN
 - (d) WBAN
- 281. A conducting line on an IC chip is 2.8 mm long and has a rectangular cross-section of 1 μm × 4 μm. A current of 5 mA produces a voltage drop of 100 mV across the line. If the electron mobility is 500 cm²/V.s, the electron concentration is
 - (a) 3.5×10^{17} cm⁻³
 - (b) $5.48 \times 10^{21} \text{ cm}^{-3}$
 - (c) 4.38×10^{21} cm⁻³
 - (d) 4.6×10²⁰ cm⁻³
- 282. In a MOSFET, the drain saturation current is
 - (a) $\frac{\mu_{n C_{ox} W}}{L} (\dot{V}_{gs} V_{th})$
 - (b) $\frac{\mu_n \, C_{ox} \, W}{2L} (V_{gs} V_{th})^2$
 - (c) $\frac{\mu_{n \ C_{ox} \ W}}{2L} (V_{gs} V_{th}) V_{ds}$
 - (d) $\frac{\mu_{n \ C_{ox} \ L}}{W} (V_{gs} V_{th})^2$

283. In the circuit given below, the base current I_B is

$$V_{BB} = \begin{bmatrix} V_{CC} \\ I_e \downarrow \leqslant R_e \\ \vdots \\ I_B \end{bmatrix}$$

- (a) $\frac{V_{BB}}{R_B}$
- (b) $\frac{(V_{BB} V_{BE})}{(R_B + R_E)}$
- (c) $\frac{(V_{BB} V_{BE})}{(R_B + (\beta + 1)R_E)}$
- (d) $\frac{V_{BB}}{(R_B + (\beta + 1)R_E)}$

284. The Hilbert transform of $\cos \omega_1 t + \sin \omega_2 t$ is

- (a) $\sin \omega_1 t + \sin \omega_2 t$
- (b) $\cos \omega_1 t + \sin \omega_2 t$
- (c) $\sin \omega_1 t + \cos \omega_2 t$
- (d) $\cos \omega_1 t + \cos \omega_2 t$

285. Consider a star network as shown in the following figure :

If the resistance between terminals b and c with a open is represented by R_A , the resistance between c and a with b open is represented by R_B and the resistance between a and b with c open is represented by R_C , then arrange R_A , R_B , R_C in descending order.

- (a) R_C , R_B , R_A
- (b) R_B , R_C , R'_A
- (c) R_A , R_B , R_C
- (d) R_B , R_A , R_C

286.	Whi	ich of the	following r	elates to	Chomsky	hierarchy?
	(a)	Regular	< CFL < C	SL < Un	restricted	

(b) CFL < CSL < Unrestricted < Regular

(c) CSL < Unrestricted < CFL < Regular

(d) None of the above

287. Which of the following functions a Turing machine cannot perform?

(a) Copying a string

(b) Deleting a symbol

(c) Accepting a pal

(d) Inserting a symbol

The action of parsing the source code into proper syntactic classes is known as

(a) parsing

(b) interpretation analysis

(c) lexicography

(d) lexical analysis

Booth's algorithm is used in floating point

(a) addition

subtraction

multiplication

division

many binary search trees are possible with four distinct keys?

圖 12

34 14

K 16

20

PART-B

Section-I

(Engineering)

- 291. Which of these is not a photoelectric device?
 - (a) Photoconductive cells
 - (b) Photoemissive cells
 - (c) Photoresistive cells
 - (d) Photovoltaic cells
- 292. Which of these represents short in a series circuit?
 - (a) Increase in resistance
 - (b) Increase in current
 - (c) Increase in voltage
 - (d) Increase in conductance
- 293. Superposition theorem stays valid for a/an
 - (a) LTI system
 - (b) discrete system
 - (c) LT system
 - (d) None of the above
- 294. Condition for critical damping of an R-L-C circuit is
 - (a) $R = \sqrt{L/C}$
 - (b) R = L/C
 - (c) $R = 1.5\sqrt{L/C}$
 - (d) $R = 2\sqrt{L/C}$
- 295. Active high-pass filters are
 - (a) R-C circuits
 - (b) differential amplifiers
 - (c) operational amplifiers
 - (d) R-L-C circuits

296.	w	nich amongst the following has	a negative occ	pe	ryeastanii		
	(a)	Copper	a negative coe	mcient of	temperature	for resistanc	e?
	(b)	10 10 10 10 10 10 10 10 10 10 10 10 10 1					
	(c)	Carbon	5 28				
	(d)	Aluminium			1.0		
297.	To	prevent ground fault curre astruction is used?	ents in 3-ph	ase auto	otransformer,	which typ	e of
	(a)	Shell					
	(b)	Wound					
	(c)	Centre tapped					
	(d)	Zig-zag					
298.	Whi	ich of these is not a P-N junc	tion capacitan	ce in R	ר ידי		
	(a)		oup.co.tur	ice in bo	1 7		
	(b)	Drift capacitance					
	(c)	Diffusion capacitance					
	(d)	Internal capacitance					
299.	The	Kirchhoff's voltage law for a.c	. is applicable	e linon o	oneideration	ř.	
	(a)	phasor sum	11	apon c	onsideration (01	
	(b)	algebraic sum			a a	-	
	(c)	progression sum					
	(d)	linear sum					
					# ()		
and.		Kirchhoff's voltage law, mesh	is a				
	(a)	graph					
	(b)	tree					
	(c)	cotree ·				14	
	(d)	loop					
301	Whic	ch of these is not a semicond	uctor?				
	(a)	Si					
	(b)	Germanium	\$				
	(c)	Tungsten .					
		None of the above					

69

[P.T.O.

303.	The characteristic impedance of a low-pass filter in attenuation	Danid 15	
	(a) purely imaginary		
	(b) zero		
	(c) complex quantity		
	(d) real value		
304.	Asymmetrical two-port networks have		
	(a) $Z_{scl} = Z_{oc2}$		
	(b) $Z_{scl} = Z_{sc2}$		
	(c) $Z_{ocl} \neq Z_{oc2}$		
	(d) $Z_{ocl} \neq Z_{oc2}$ and $Z_{scl} \neq Z_{sc2}$		
305.	An all-pass filter passes		
	(a) whole of the audio band		
	(b) whole of the radio band		
	(c) all frequencies with very low attenuation	noise.	
	(d) all frequencies without attenuation but phase is changed		
306.	A delta connection contains three impedances of 60Ω eac equivalent star connection will be	h. The imped	ances of
	(a) 15 Ω each		
	(b) 20 Ω each		
	(c) 30 Ω each		
	(d) 40 Ω each		
- 1	riolde		
307	t de la constance		
	(a) equivalent resistance		
	(b) equivalent voltage	185716	
	(c) equivalent voltage or current(d) value of current in milliamperes input to a circuit from	n a voltage so	arce
	(d) value of current in initiality (d)		

70

Which of these represents the half-time constant?

302.

0.693T

0.876T

0.450T

(b) 0·504T

(a)

(c)

(d)

/258-A

	(d)	0							
10.	Mi	crowave repeaters are typically							
	(a)	25 km apart							
	(b)	50 km apart							
	(c)	75 km apart							
	(d)	100 km apart							
1.	Str	apping is used in a magnetron to							
	(a)	prevent mode jumping							
	(b)	reduce frequency drift							
	(c)	ensure proper bunching							
	(d)	dissipate heat				13			
	The	resonant frequency of a cavity res	onator	deper	nds upo	on			
	(a)	the mode of operation							
	(b)	its electrical dimensions							
	(c)	its physical dimensions							
	(d)	the capacitor which tunes it							
8-A	1	71					76	[P.T.	

A PIN diode is microwave

A transmission line of VSWR 7 has a reflection coefficient

oscillator

mixer

detector

switch

0.25

0.5

(c) 0.75

308.

(a)

(b)

(c)

(d)

(a)

(b)

313. T	he intri	insic impedance	of	free	space	is	
--------	----------	-----------------	----	------	-------	----	--

- (a) 75 ohm
- (b) 73 ohm
- (c) 120π ohm
- (d) 377 ohm

314. Consider a transmission line of characteristic impedance 50 ohm and the line is terminated at one end by +j50 ohm. The VSWR produced in the transmission line will be

- (a) +1
- (b) zero
- (c) infinity
- (d) -1

315. Which one of the following conditions will **not** guarantee a distortionless transmission line?

- (a) R = 0 = G
- (b) RC = LG
- (c) Very low frequency range $(R \gg \omega L, G \gg \omega C)$
- (d) Very high frequency range $(R \ll \omega L, G \ll \omega C)$

316. The dominant mode of rectangular waveguide is

- (a) TE11
- (b) TM11
- (c) TE01
- (d) TE10

317. Which of the following has the longest wavelength?

- (a) HF
- (b) VHF
- (c) UHF
- (d) SHF

318.	 The gain of the half-wave dipole is 		A see			
	(a) 1					
	(b) 1·641					
	(c) 6					
	(d) 16					
319,	. Radar antenna is usually			2		
	(a) dipoles					
	(b) Yagi antennas					
	(c) parabolic dishes					
	(d) None of the above					
320.	For a good conductor, the skin depth	ı varies				
	(a) directly as frequency f					
	(b) directly as \sqrt{f}		20			
	(c) inversely as f					
	(d) inversely as \sqrt{f}			ŧ		
21.	When the electromagnetic waves are wavelength along the wall is	e reflected a	at an angle	from the	wall, their	
	(a) same as in free space					
	(b) same as wavelength perpendicula	ar to the wal	1			
	(c) shortened due to Doppler Effect		H			
	(d) greater than that in actual direct	ion				

322.	In a hollow rectangular waveg	uide, phase velocity	
	(a) increases with increase in	n frequency	
	(b). decreases with increase i	n frequency	1.5
	(c) is independent of frequer	псу	
	(d) will vary with frequency	in a given range	
	paratic to average is at	¥-	
323.	An oscillator circuit is mainly	2.	
	(a) d.c. to a.c. converter		
8	(b) d.c. to d.c. converter		Sharmon as
	(c) a.c. to d.c. converter		
	(d) a.c. to a.c. converter	1	
324.	The consumption of LEDs ma	y be of the order	
	(a) 5 to 10 nanoamperes		
	(b) 5 to 10 microamperes		
	(c) 5 to 10 milliamperes		
	(d) 5 to 10 amperes		
325.	The properties of JFET resen	able of	
	(a) thermionic values		
	(b) NPN transistors		
	(c) PNP transistors		
	(d) unijunction transistors		
		r of functions can be defined w	ith two symbols which are
326	How many maximum numbe Boolean in nature?	r of functions can be defined w	
	(a) 4		
	(b) 8		
	· (c) 2		10 SAU
	(d) 16	*	
/25	58-A	74	

32	7. W	hich one 186 and a	of the follow a 16-bit AD(ing is used as	s the inte	face chip	for data tra	ansmission	between
			(6)						
	(a)	8259							
	(b)	8255							
	(c)	8253							
	(4)	0054		1 2					
	(d)	8251	. 74						
328	The								
020	time	e becaus	ay of an NM e	OS inverter is	dominate	ed by char	ge time rat	her than di	scharge
	(a)	the driv	ver transisto	r has larger	threshold	voltage th	an the loa	d transist	
	(b)								
	(0)	the driv	er transistor	has larger lea	akage cun	ent compa	red to the	load transi	stor
	(c)								
	,	Life Ida	LIGHISISIOF	has smaller \	W/L ratio	compared	to the dr	iver transis	stor
	(d)		the above					E.)	
		1400							
329.	MOS	SFET can	he used as						
	(a)	current-	controlled ca	apacitor					
	(p)	voltage-c	ontrolled ca	pacitor					
	(-)								
	(c)	current-	controlled in	ductor					
	(d)	voltage -	-64 11						
	(4)	voitage-c	ohtrolled inc	luctor					
330.	The e	effective -		525 SS					
	1110 0	nective c	nannel leng	th of a MOSI	FET in sa	turation d	ecreases w	ith increas	se in
		gate volta				-			
	(-)	Perc Antic	rgc .						
	(b) c	drain volt	age					S1	
	27.69								
	(c) s	source vo	ltage						
	(d) b	ody volta	ige						

Section-II

(IT/Computer Sciences)

331.	The is	e minimum time delay between called	the initiation of two in	dependen	t memory operat	ions
	(a)	access time		12		
	(b)	cycle time				
	(c)	transfer time				
	(d)	latency time			7. 18	
					*	
332.	Wh	ich of the following logic famili	es is well-suited for l	nigh-speed	d operations?	
	(a)	TTL				
	(b)	ECL *				
	(c)	MOS				
	(d)	CMOS		27		
333.	The	value of an automatic variable	e that is declared but	t not initia	alized will be	
	(a)	0 ,		1101 11111	ameta, wiii be	
	(b)	-1				
	(c)	unpredictable				
	(d)	None of the above	20			
334.	In a	compiler, grouping of charact	ers into tokens is do	ne by		
	(a)	scanner '				
	(b)	parser				
	(c)	code generator				
	(d)	code optimizer				
201				. 100		
335.	CFC	can be recognized by	L. L.			
	(a)	push-down automata				
	(b)	2-way linear bounded automa	ata ·			
	(c)	infinite state automata				
	(d)	None of the above			000	

336.	The	e logic of pumping lemma is a good e	example of			
	(a)					
	(b)	divide and conquer technique				
	(c)	recursion,		39		
	(d)	iteration				
337.	Vir	tual memory is				
	(a)	an extremely large main memory				
	(b)	an extremely large secondary memo	ory			
	(c)	an illusion of an extremely large me	emory		3	
	(d)	a type of memory used in supercon	nputers			
338.	In v	which of the scheduling policies, cont	ext switch never ta	akes place?		
	(a)	Round-robin	120			
	(b)	Shortest job first				
	(c)	Pre-emptive	a			
	(d)	First-come-first-served				
339.	How	v many pointers are necessarily chang	ged for the insertio	n in a linke	ed list?	
	(a)	One				
	(b)	Three				
	(c)	Two				
	(d)	Five		7	F#4	
340.	Whic	ch algorithm specifies the addition of er of cost?	edges to the spann	ing tree in	an increa	sing
	(a)	Prim's algorithm				
	(b)	Kruskal's algorithm				
	(c)	Both (a) and (b)		0		
	(d)	None of the above				

342.	If a relation scheme is in Bo	CNF, then it is also in		127
	(a) 1NF			
1104	(b) 2NF		* 41, 181	
	(c) 3NF		movem to	
	(d) All of the above		F 22 (05)	
343.	Transmission media are usua	ally categorized as	differen	
	(a) fixed or unfixed		-01 10	
	(b) guided or unguided			
	(c) deterministic or undeter	ministic		
	(d) metallic or non-metallic			
344.	The number of bits in an IPv	% address is		
	(a) 32			
	(b) 64			
	(c) 128			
	(d) 256			
45.	Wi-Fi stands for			
	(a) Wired-Philosophy	at		
	(b) Wireless-Philosophy			
	(c) Wireless-Fidelity			
	(d) Wired-Fiber			
258-	4		A.	
400-2		78	Are	

341.

(a)

(b)

(c)

(d)

E-R modeling technique is a

top-down approach

bottom-up approach

left-right approach

None of the above

346.	Which of the following ISO levels is more closely related to the physical communication facilities?								
	(a)	Application							
	(b)	Session		×					
	(c)	Network	- # I						
	(d)	Data Link							
347.	Sec	ret key cryptography makes use of		(420)					
	(a)	one key							
	(b)	two keys							
	(c)	three keys							
	(d)	any number of keys							
348.	Wh	ich of the following services is not provided by dig	ital signatures direc	ctly?					
	(a)	Message authenticity							
	(b)	Message confidentiality							
	(c)	Message integrity							
	(d)	Non-repudiation		2 2					
349.	The	number of possible ordered trees with three node	s A, B, C is						
	(a)	16							
	(b)	12							
	(c)	6							
	(d)	10							
350.	The	following sequence of operation is performed on s							
	(TI)	push(1),push(2),pop,push(1),push(2),pop,pop,pop,p	oush(2),pop						
		sequence of popped out values are?	- H						
	(a)	2,2,1,1,2							
	(b)	2,2,1,2,2							
	(c)	2,1,2,2,1		;;;					

- 351. The complexity of merge sort algorithm is
 - (a) O(n)
 - (b) O(log n)
 - (c) $O(n^2)$
 - (d) $O(n \log n)$
- 352. The depth of a complete binary tree is given by
 - (a) $D_n = n \log 2n$
 - (b) $D_n = n\log 2n + 1$
 - (c) $D_n = \log 2n$
 - (d) $D_n = \log 2n + 1$
- 353. How many strings of length less than 4 contain the language described by the regular expression $(x + y)^* y(a + ab)^*$?
 - (a) 7
 - (b) 10
 - (c) 12
 - (d): 11
- 354. A language is regular if and only if
 - (a) accepted by DFA
 - (b) accepted by PDA
 - (c) accepted by LBA
 - (d) accepted by Turing machine
- 355. Which of the following is not a regular expression?
 - (a) $[(a+b)^* (aa+bb)]^*$
 - (b) $[(0+1)-(0b+a1)^*(a+b)]^*$
 - (c) (01+11+10)*
 - (d) $(1+2+0)^*(1+2)^*$

356. If L and $\sim L$ are recursively enumerable, then L is

- (a) regular
- (b) context free
- (c) context sensitive
- (d) recursive

357. Which of the following denotes Chomskian hierarchy?

- (a) $REG \subset CFL \subset CSL \subset type 0$
- (b) CFL ⊂ REG ⊂ type0 ⊂ CSL
- (c) $CSL \subset type0 \subset REG \subset CFL$
- (d) $CSL \subset CFL \subset REG \subset type 0$

358. Consider the following right-linear grammar:

$$G = (N, T, P, S)N = \{S\}$$

$$P: S \rightarrow aS \mid aA \mid T = \{a, b\}$$

$$A \rightarrow bA \mid b$$

Which of the following regular expressions denotes L(G)?

- (a) $(a+b)^*$
- (b) a(ab)* b
- (c) aa* bb*
- (d) a*b*

359. Set of all strings over the alphabet $\Sigma = \{a, b\}$ (including ε) is denoted by

- (a) $(a+b)^*$
- (b) (a+b)+
- (c) a + b +
- (d) a*b*

360. Which of the following regular expressions denotes a language comprising of all possible strings over $\Sigma = \{a, b\}$ of length n, where n is a multiple of 3?

- (a) $(a+b+aa+bb+aba+bba)^*$
- (b) (aaa + bbb)*
- (c) $((a+b)(a+b)(a+b))^*$
- (d) (aaa + ab + a) + (bbb + bb + a)

361	Which of the following conversions is not possible (algorithmically)?				
	(a) Regular grammar to conte		,		
	(b) Nondeterministic FSA to o				
	(c) Nondeterministic PDA to o				
	(d) Nondeterministic TM to de				
		Tim			
362	A computer has six tape drivers with n process competing for them. Each process may need two drivers. What is the maximum value of n for the system to be deadlock free?				
	(a) 6		(4)		
	(b) 4				
	(c) 5				
	(d) 3	A.			
2.22					
363,	E-R model uses which of the following symbols to represent weak entity set?				
	(a) Dotted rectangle		_n erstewi		
	(b) Diamond		= (t) (a)		
	(c) Doubly outlined rectangle				
	(d) Square				
254					
364.	Which of the following is not a	guided transmission line?			
	(a) Twisted pair	2.0			
	(b) Coaxial cable				
	(c) Optical fiber				
	(d) Laser beam				
365.	ICMP is primarily used for				
	(a) error and diagnostic function	ns			
	(b) addressing				
	(c) forwarding				
	(d) load shedding				
	1-7 was onceding				
/258	-A	80	37.0		
		82			

366.	In the architecture of a database system, external level is the	
	(a) physical level	
	(b) logical level	
	(c) conceptual level	
	(d) view level	
367.	Cartesian product in relational algebra is	
	(a) a unary operator	
	(b) a binary operator	
	(c) a ternary operator	
	(d) Not defined	
368.	Secret-key encryption is also known as	E.
	(a) asymmetric encryption	
	(b) symmetric encryption	
	(c) secret encryption	
	(d) private encryption	
369.	A RAM chip has a capacity of 1024 words of 8 bits each (1 K×8). The decoders with enable line needed to construct a 16 K×16 RAM from the construct a 16 K×16 RAM from	the number of 2×4 cm 1K×8 RAM is
	(a) 4 °	
	(b) 5	
	(c) 6	
	(d) 7	
370.	. In an E-R diagram, attributes are represented by	Str.
	(a) rectangle	
50	(b) square	
	(c) ellipse	
	(d) triangle	