117

QUESTION PAPER SERIES CODE

A

Centre of Exam. :		

Signature of Invigilator

COMBINED ENTRANCE EXAMINATION, 2018

M.Sc. AGRICULTURAL BIOTECHNOLOGY

[Field of Study Code : BAG]

Time Allowed: 3 hours

Maximum Marks: 240

INSTRUCTIONS FOR CANDIDATES

Candidates must read carefully the following instructions before attempting the Question Paper:

- (i) Write your Name and Registration Number in the space provided for the purpose on the top of this Question Paper and in the Answer Sheet.
- (ii) Please darken the appropriate Circle of Question Paper Series Code on the Answer Sheet.
- (iii) The Question Paper is divided into two Parts: Part—A and Part—B. Both Parts have multiple-choice questions. All answers are to be entered in the Answer Sheet provided with the Question Paper for the purpose.
- (iv) Part—A consists of 60 questions and all are compulsory. Answer all the questions in the Answer Sheet provided for the purpose by darkening the correct choice, i.e., (a) or (b) or (c) or (d) with BALLPOINT PEN only against each question in the corresponding circle. Each correct answer carries 1.5 marks. There will be negative marking and ½ mark will be deducted for each wrong answer.
- (v) Part—B consists of 100 questions. Answer any 60 questions in the Answer Sheet by darkening the correct choice, i.e., (a) or (b) or (c) or (d) with BALLPOINT PEN only against the corresponding circle. Each correct answer carries 2.5 marks. There will be negative marking and 1 mark will be deducted for each wrong answer.

In case any candidate answers more than the required 60 questions, the first 60 questions attempted will be evaluated.

- (vi) Answer written by the candidates inside the Question Paper will not be evaluated.
- (vii) Calculators and Log Tables may be used.
- (viii) Pages at the end have been provided for Rough Work.
- (ix) Return the Question Paper and Answer Sheet to the Invigilator at the end of the Entrance Examination. DO NOT FOLD THE ANSWER SHEET.

INSTRUCTIONS FOR MARKING ANSWERS

- 1. Use only Blue/Black Ballpoint Pen (do not use Pencil) to darken the appropriate Circle.
- 2. Please darken the whole Circle.
- 3. Darken ONLY ONE CIRCLE for each question as shown in example below :

Wrong	Wrong	Wrong	Wrong	Correct
● ® © ●	Ø 6 6 6	Ø 6 6	● ⑤ ⑥ ⑤	ⓐ ⓑ ⓒ ●

- 4. Once marked, no change in the answer is allowed.
- 5. Please do not make any stray marks on the Answer Sheet.
- 6. Please do not do any rough work on the Answer Sheet.
- 7. Mark your answer only in the appropriate space against the number corresponding to the question.
- Ensure that you have darkened the appropriate Circle of Question Paper Series Code on the Answer Sheet.

PART-A

Answer all questions

1.	Which one of the following is the methyl ender from aspartic acid and phenylalanine?	ster artificial sweetener of dipeptide formed
	(a) Alitame	a

(b) Sucrose

(c) Aspartame

(d) Saccharin

2. Ranitidine is a drug used to treat

(a) fever

(b) headache

(c) muscular pain

(d) hyperacidity

3. Rayon (cellulose acetate) is an example of

(a) natural polymer

(b) semi-synthetic polymer

(c) synthetic polymer

(d) biological polymer

4. Cellobiose is a disaccharide made up of

(a) glucose and fructose

(b) glucose and glucose

(c) glucose and sucrose

(d) glucose and mannose

5. Millikan's oil drop method helps to determine

(a) change on the proton

(b) change on the electron

(c) change to the neutron

(d) entire change in the atom

		The second secon					
6.	Th	ne functional group in diazo	nium salt is				
	(a)	-NO ₂					
	(b)	-NH ₂	98 5				
	(c)	-N ₂ X-					
		*	**	24		A)	
	(d)	—NH ₄ X				(6)	
~	****		*		4	b)	
7.	WI	nich of the following is a ph	enol?			ka	
	(a)	Picric acid					
	(b)	Acetic acid	F98				
	(c)	Benzoic acid					
	(d)	Hydrochloric acid					
_							
8.	The of a	e temperature of liquid nitrog animal is	en used for cryopreserv	ation of see	ds/freezing	g of sem	ien
	(a)	−190 °C					
	(b)	−196 °C					
	(c)	-90 °C					
	(d)	−120 °C					
	D.				- 7		
9.		nwater has a pH of					
	(a)	7					
	(b)	6.8					
	(c)	8.5					
I	(d)	5.6	20				
0.	Whi	ch of the following is a line	ar compound?				
	(a)	H ₂ O	a compound:				
	(b)	CO ₂					
	(c)	NH ₃					
	(d)	PBr ₃					

11.	Whi	ich of the following is a strong ba	ase?		
	(a)	Aniline			
	(b)	Benzylamine			
	(c)	Pyridine			
	(d)	Methylamine			
12.	In t	the IUPAC nomenclature, the high	hest priority gro	up is	
9	(a)	ketone			
	(b)	alkane			
	(c)	alkene		IW.	
	(d)	halogen			
13.	Whi	ich of the following groups can b	e both oxidized	or reduced?	
	(a)	Alcohol	20		
	(b)	Acid		25	
	(c)	Ketone			
33	(d)	Amine	3		
14.	Eth	yl acetate can undergo which of	the following tr	ansformations?	a
	(a)	Base hydrolysis		2 3	
	(b)	Substitution			
	(c)	Dehydration			
	(d)	Elimination			
15.	Anh	nydrides can be formed by which	of the following	g reactions?	
	(a)	Acid chloride and alcohol			
	(b)	Acid and alcohol			
	(c)	Acid and acid chloride			
	(d)	Acid and amine			

		7			
16.	The 'one gene-one enzyn	ne' hypo	othesis was proposed	by	
	(a) Lederberg and Tatu		F	-,	
	(b) Muller and Stadler				
	(c) Watson and Crick				
	(d) Beadle and Tatum			. 9	
17.	How many mitotic division cell?	ns will	take place to produce	512 cells from a single pa	irent
	(a) 9			(6)	
	(b) 256			96. 291	
	(c) 158				
	(d) 511				
10	170.101.001			1.0	
18.	Vivipary is				
	(a) seed germination wi				
	(b) seed germination wi	th epite	rranean cotyledons		
	(c) fruit development w	ithout p	pollination		
	(d) seed germination in	side the	fruit, the fruit while	attached to the plant	
19.	Mosquito coils/mats cont	ain			
	(a) paraquat				
	(b) BHC				
	(c) toxaphene				
	(d) derivatives of allethr	in			
200	2275 21 327 52527 3		E 1		
20.	Match the following:				
	Hormone		Source		
	(A) Growth Hormone	(1)	Ovary		
	(B) Oestrogen	(2)	Thyroid	37	
	(C) Thyroxine	(3)	Pituitary	40	
	(D) Adrenaline	(4)	Suprarenal gland		
	(a) A-4, B-3, C-2, D-1				
	(b) A-3, B-1, C-2, D-4				
	(c) A-1, B-4, C-2, D-3		8		
	(d) A 2 B 4 C 2 D 1				

21.	Ruminants have number of	of compartments in their stomach.
	(a) 1	
	(b) 2	
	(c) 3	
	(d) 4	
22.	Diseases transmitted from anima	al to man and vice versa are known as
	(a) contagious diseases	
	(b) zoonotic diseases	
	(c) infectious diseases	
	(d) brucellosis	
23.	Match the following:	* , =
	Disease	Vector
	(A) Malaria (1)	Culex sp.
	(B) Cholera (2)	Aedes sp.
	(C) Dengue (3)	Anopheles sp.
	(D) Elephantiasis (4)	Musca sp.
	(a) A-4, B-3, C-1, D-2	0.65
	(b) A-3, B-1, C-2, D-4	
	(c) A-1, B-4, C-3, D-2	
	(d) A-3, B-4, C-2, D-1	
24.	Sleeping sickness is caused by	H\$.2.
	(a) Trypanosoma evansi	
	(b) Trypanosoma gambiense	
	(c) Trypanosoma foetus	
	(d) Trypanosoma cruzi	
25.	Normal life span of red blood co	ell is
	(a) 180 days	100
	(b) 120 days	
	(c) 80 days	19 V-

(d) 200 days

other organism?	organism and neither benefits nor harms the
(a) Commensalism	*
(b) Amensalism	
(c) Parasitism	
(d) Symbiosis	
27. Disease resistance mechanisms that are under	e not specific to a particular pathogen come
(a) adaptive immunity	
(b) innate immunity	
(c) passive immunity	
(d) active immunity	
28 is endangered medicinal plant !	
28 is endangered medicinal plant listed (a) Basil	d in the Red Data Book.
(a) Basil	
(b) Bael	
(c) Periwinkle	
(d) Sarpagandha	
29. Mesophiles grow in a temperature range of	f
(a) 25 °C to 45 °C	
(b) 15 °C to 30 °C	
(c) 22 °C to 45 °C	
(d) 15 °C to 45 °C	1500 Wi

30. Nitrogen fixing microorganism in legume crop is

- (a) Rhizobium
- (b) Acetobacter
- (c) Azospirillum
- (d) Frankia

31. The quadratic equation whose roots are 3 and -5 is given by

- (a) $x^2 2x 15 = 0$
- (b) $x^2 5x + 15 = 0$
- (c) $x^2 + 2x 15 = 0$
- (d) $x^2 + 3x 15 = 0$

32. Find the 5th term of the AP series with a first term 11 and c.d. 7.

- (a) 368
- (b) 361
- (c) 568
- (d) 561

33. The product of two consecutive numbers is given by 3782. The numbers are

- (a) 63, 64
- (b) 57, 58
- (c) 61, 62
- (d) 71, 72

34. If two workers can do a definite work in 4 days and 6 days separately, how long will it take to finish that work when they work together?

- (a) 10 days
- (b) 2.8 days
- (c) 2.4 days
- (d) 2 days

- A function f(x) is defined by the equation $\sqrt{(x+2)}$. Then which of the following 35.
 - The domain of f(x) is all the real numbers.
 - (b) The domain of x is all the real numbers.
 - The domain of f(x) is $-2 \le x < \infty$. (c)
 - The domain of x is $-2 \le x < \infty$. (d)
- The equation of the straight line is given by 6x + 2y = 18. The x and y intercept is given 36.
 - (3, 0), (0, 4) (a)
 - (b) (4, 0), (0, 4)
 - (c) (3, 0), (0, 9)
 - (d) (4, 0), (0, 9)
- The equation of the circle whose centre lies on the point (-3, 4) and passes through the
 - (a) $(x+3)^2 + (y-4)^2 = 5^2$
 - (b) $(x-3)^2 + (y+4)^2 = 5^2$
 - (c) $(x+3)^2 + (y-4)^2 = 7^2$
 - (d) $(x-3)^2 + (y+4)^2 = 7^2$
- The equation of a line which is perpendicular to the line 3x 4y + 12 = 0 and passing 38.
 - 3y + 4x + 12 = 0
 - 3x + 4y + 12 = 0
 - (c) 3x + 4y = 0
 - (d) 3y + 4x = 0
- sin 3θ can be written in its expanded form as 39.
 - (a) $3\sin\theta - 4\sin^3\theta$
 - (b) $-3\sin\theta + 4\sin\theta$
 - $-4\sin\theta + 3\sin^3\theta$
 - (d) $-3\sin\theta + 4\sin^3\theta$

ring

40. The two binary numbers (100 and 111) were added. The sum in the decimal number system is

- (a) 100
- (b) 10
- (c) 11
- (d) 101

41. The age difference between the two children of a man is 5 years. The product of their ages after two years will be 50. Find the ages of the children now.

- (a) 8, 13
- (b) 2, 7
- (c) 3, 8
- (d) 5, 10

42. A function is defined by $x^2 - 6x$. Find out whether the function has maxima or minima, and also calculate the value of maximum or minimum.

- (a) Maxima, 2
- (b) Minima, -2
- (c) Maxima, -9
- (d) Minima, -9

43. The two roots of a quadratic equation $(ax^2 + bx + c = 0)$ is given by 2+i and 2-i. Then which of the following statements is correct?

- (a) All the coefficients a, b and c contain imaginary numbers.
- (b) None of the coefficients contains any imaginary terms.
- (c) Coefficients a and b are real and c is imaginary.
- (d) Coefficient a is real and b and c are imaginary.

44. If $0 \le \theta \le 90^\circ$, then the value of θ in $\cos^2 \theta - \sin^2 \theta = 1$ is

- (a) 45°
- (b) 30°
- (c) 90°
- (d) 0

45.	$\int_{2}^{3} (4$	$x^3 + 3$) dx equals
	(a)	81

77

(c) 78

(b)

(d) 68

46. Which of the following quantities is dimensionless?

(a) Work

(b) Area

(c) Angle

(d) Force

47. The most suitable instrument for measuring the size of an atom is

(a) vernier caliper

(b) screw gauge

(c) electron microscope

(d) optical microscope

48. The component of contact force normal to the surfaces in contact is called

(a) gravitational component

(b) friction

(c) tension

(d) normal reaction

49. Which physical quantity is conserved during both elastic and inelastic collisions?

(a) Linear momentum

(b) Velocity

(c) Potential energy

(d) Kinetic energy

50. Who discovered radioactivity?

(a) Rutherford

(b) Marie Curie

(c) Roentgen

(d) Becquerel

- 51. The heat transferred from a system to its surroundings (or vice versa) when a chemical reaction is run under conditions of constant pressure is equal to
 - (a) the change in the enthalpy of the system
 - (b) the change in the energy of the system
 - (c) the change in the free energy of the system
 - (d) the change in the entropy of the system
- 52. Three different capacitors are connected in series, then
 - (a) they will have equal charge
 - (b) they will have equal potential
 - (c) they will have less charge
 - (d) they will have more potential
- 53. A boy throws a ball vertically upwards with an initial speed of 50 m/s. How long the ball takes to reach the maximum height and what is its maximum height?
 [g (approx.) = 10 m/s²]
 - (a) 1.2 s, 14.4 m
 - (b) 1·2 s, 7·2 m
 - (c) 0.6 s, 14.4 m
 - (d) 0.6 s, 7.2 m
- 54. A person pushes a 20 kg box horizontally with a force of 120 N for a distance of 6 m on a straight-line path. How much work is done on the box by the person?
 - (a) 120 J
 - (b) 2400 J
 - (c) 720 J
 - (d) 20 J
- 55. A boy weighing 30 kg is wearing a roller skating shoe and rolls down a slanted path having a vertical height of 2.5 m. The length of the slanted path is 10 m. If we consider the friction as negligible, find the speed of the boy at the bottom of the slant.
 [g (approx.) = 10 m/s²]
 - (a) 7·1 m/s
 - (b) 7.3 m/s
 - (c) 9.2 m/s
 - (d) 6.5 m/s

- **56.** If $\vec{A} = 2i + 3j$ and $\vec{B} = -i 4j$, find the value of $\vec{A} + \vec{B}$.
 - (a) i+j
 - (b) i − j
 - (c) 2i 12j
 - (d) 2i + 12j
- 57. Two cars of equal mass are travelling with a speed of 120 km/h and 60 km/h, respectively. Find the ratio of the kinetic energy of the two cars.
 - (a) 1
 - (b) 2
 - (c) · 4
 - (d) $\frac{1}{2}$
- 58. When body is earthed, electrons flow from the earth into the body. This means the body is
 - (a) charged negatively
 - (b) charged positively
 - (c) uncharged
 - (d) an insulator
- 59. An astronomical telescope has a large aperture to
 - (a) have high resolution
 - (b) reduce spherical aberration
 - (c) have low dispersion
 - (d) increase span of observation
- 60. Internal energy of an ideal gas does not change in
 - (i) an isothermal process
 - (ii) an adiabatic process
 - (iii) a reversible process
 - (iv) a cyclic process

Choose the correct option.

- (a) (i) and (ii)
- (b) (i) and (iii)
- (c) (ii) and (iii)
- (d) (ii) and (iv)

PART-B

Answer any sixty questions

- 61. Germination of seed is inhibited by
 - (a) red light
 - (b) blue light
 - (c) UV light
 - (d) IR light
- 62. Grow-out Test (GOT) is much useful in
 - (a) cross-pollinated crops
 - (b) often cross-pollinated crops
 - (c) self-pollinated crops
 - (d) self- and cross-pollinated crops
- 63. Among the following, the element that can accumulate in plants without exhibiting toxicity symptoms is
 - (a) nitrogen
 - (b) potassium
 - (c) phosphorous
 - (d) sulphur
- 64. Identify the right combination.
 - (a) Iron-Khaira disease of rice
 - (b) Magnesium-Chlorosis
 - (c) Boron-Cracking of fruits
 - (d) Zinc-Pahala disease of sugarcane
- During catabolism, glucose is converted to glucose-6-phosphate using ATP, but during anabolism
 - (a) glucose is formed from phosphate ester by hydrolysis
 - (b) glucose is formed from pyruvate
 - (c) glucose is produced from its enol phosphate
 - (d) glucose is formed by isomerisation

66,	Coconut oil is good for health due to the presence of		
	(a) oleic acid		
	(b) palmitic acid		
	(c) arachidonic acid		
	(d) lauric acid		
	(=) marie dela		
67.	The beta-oxidation of a molecule of palmitic acid yields		(5)
	(a) 8 molecules each of acetyl CoA, ATP and water	,	
	(b) 16 molecules of acetyl CoA only		
	(c) CoA and water only		
	(d) Uses more ATPs than what it generates		
	Av .		
68.	As the degree of unsaturation increases in fatty acids, the me	elting point	
	(a) increases		
	(b) decreases		
	(c) remains same		
	(d) is unpredictable		
69.	A minuted to the state of the s		
09.	A man died by cyanide poisoning, because		
	(a) cyanide causes inflammation in gastro-intestinal tract		
	(b) cyanide blocks complex IV during ETC		
	(c) cyanide blocks ATPase during ETC		
	(d) cyanide blocks action of neurotransmitter		
70.	Photosynthetic pathway for liberation of one molecule of ${\rm O}_2$ remany ATP and NADPH form during this process?	quires 8 quanta. H	ow
	(a) 2 ATP + 2 NADPH		

9 ATP + 9 NADPH

2 ATP + 1 NADPH

4 ATP + 0 NADPH

71.	Hov	w much NaOH is required to prepa	are 500 ml of 0	3 M NaOH?	
	(a)	4 g			**
	(b)	3 g			
	(c)	6 g			
	(d)	0-6 g			
72.	Whi	ich kind of reaction is promoted b	y vitamin B ₅ ?		
3	(a)	Redox reaction			
	(b)	Carboxylation		10.1	
	(c)	Transfer of acyl group			
20	(d)	Transfer of amino group			
73.	On	a Lineweaver-Burke plot, which in	nhibitor increase	s $K_{ m m}$ but $V_{ m max}$	is unchanged?
	(a)	Competitive			981
	(b)	Non-competitive			
	(c)	Irreversible			
	(d)	Un-competitive			
74.	Koz	ak element is associated with			
	(a)	transcription			
	(b)	translation			
	(c)	replication			
	(d)	RNA splicing			
75.	The	isoelectric pH is that at which th	ne protein is		
	(a)	neutral			
	(b)	anionic	A ²⁰		*
	(c)	cationic		(e)	
	(d)	non-ionic			
	1-1				

		mater the following :		
		 (A) Rudolf Virchow (B) Robert Brown (C) Singer and Nicolson (D) Christian de Duve (a) A-4, B-3, C-1, D-2 (b) A-1, B-2, C-3, D-4 	 Lysosome Fluid mosaic model Cells arise from pre-existing Nucleus 	g cells
		(c) A-3, B-4, C-2, D-1		Smit de-
		(d) A-4, B-3, C-2, D-1		- Trees
77	. 1	The cell organelles mainly re	sponsible for protein sorting are	- 0:03
	(:	a) nucleus and endoplasm	ic reticulum	
	(1	b) endoplasmic reticulum a		
	(0		ratus	
	(d			
78.	Ŵ	hich cell organelle lacks un	it membrane?	
	(a			
	(b)) Ribosome		901
	(c)	Microtubule		
	(d)	Vacuole		
79.	WI	nich is not a secondary mes	Spangon for all the second	
	(a)	Calcium	sociager for cell signalling?	
	(b)	IP ₃		
	(c)	Cyclic AMP	24	
	(d)	Molybdenum		
80.	Wh	ich one is an energy depend	lent transportation?	
	(a)	Diffusion		
	(b) ·	Facilitated diffusion	90	
	(c)	Osmosis		

(d) Na⁺/K⁺ transport

01	Wh.:	ich cytoskeletal filament is involved	in transport of vesicles?	
81.			in transport of vesicies.	
	(a)	Microtubule		13
	(b)	Intermediary filament		
	(c)	Microfilament		
	(d)	Keratin		
82.	Whi	nich of the following is not involved i	n intercellular transport of th	e molecules?
	(a)	Plasmodesmata		
	(b)	Gap junctions		
	(c)	Desmosome	V & 2	
	(d)	Endosome		
83.	Poly	lytene chromosome results from	59	
	(a)	endo-reduplication		
	(b)	aneuploidy		127
	(c)	euploidy		
	(d)	polyploidy		
84.	Вс	chromosomes are usually found in		
	(a)	rice		
	(b)	4		
	(c)			
	(d)	wheat	1	
85.	The	e cell cycle in prokaryotes is		
	(a)	G_1 , S , G_2 , M		
	(b)			
	(c)			3

(d) G₁, G₂, S, M

86.	Wh	nich of the following cor	mbinations of gene	es used in Bollga	rd II cotton?	
	(a)			\$1 <u>5</u> 1	1 1	
	(b)	cry1Ac and cry2Ab	1.5			
	(c)	cry1Ab and cry2Ab				
9	(d)	cry2Ac and cry1F		.71		
87.	Wh	ich one of the following njab?	is a phloem feeder	that causes seve	re yield loss in co	t ton ii
	(a)	Bemisia tabaci	10			
	(b)	Thrips tabaci				
	(c)	Amrasca devastans				
	(d)	Tetranychus sp.				
88.	In v	which one of the followi	ing crops. Ug99 ra	ace of most is idea	ntified2	
	(a)	Finger millet	3 7-, -8 1			
	(b)	Rice				
	(c)	Wheat				
	(d)	Cotton				
89.	Gen	e for gene hypothesis fo studied in	or disease resistan	ace and susceptib	pility, proposed by	Flor,
	(a)	wheat and wheat rust	į.			
	(b)	coffee and coffee rust		5è		
	(c)	flax and flax rust				
	(d)	rice and rice blast	10		1 N 1 100	
90.	Bio-	control agent used for	the control of Rhiz	zoctonia solanii is		
	(a)	Pasteuria penetrans				
	(b)	Pseudomonas fluoresce	ens			
	(c)	Trichoderma viride				16 N
	(d)	Bacillus subtilis				

91.	Ind	luced systemic resistance is not mediated by	y which	of the follo	wing?	
	(a)	Jasmonic acid				
	(b)	Salicylic acid			142	
	(c)	Ethylene				
	(d)	Auxin				
92.	Wh	nich of the following does not apply to SRI r	nethod	of rice cult	ivation?	
	(a)	Reduced water application				
	(b)	Reduced plant density				
	(c)	Reduced age of seedlings		31		
	(d)	Reduced application of chemical fertilizer				
93.	The	e species of rice other than Oryza sativa tha	t is cul	tivated is		
	(a)	Oryza glaberrima				
	(b)	Oryza nivara				
	(c)	Oryza rufipogon	-	51		
	(d)	Oryza longistaminata				
94.	For	getting 100 kg of nitrogen, how much urea	one we	ould apply?		
	(a)	46 kg			*	
	(b)	111 kg		5		
	(c)	222 kg				
	(d)	333 kg				
95.	Wh	ich of the following tillage operations is ben	eficial u	nder dry fa	rming con	ndition?
	(a)	Puddling				
	(b)	Zero tillage				
	(c)	Harrowing			36	
	(d)	Fallowing				

21

[P.T.O.

/117-A

96. The crop highly sensitive	to Mo deficiency is	
(a) cauliflower	and the second of the second o	
(b) tomato		
(c) carrot		
(d) wheat		
1-7 Wiled	#	
97. Afforestation is necessary	for	
(a) soil conservation		
(b) weed control		
(c) pest management		3930
(d) soil degradation		
- G- Mattion		
98. Geographical indication (GI) is a form of	
(a) protection of IPR		
(b) in situ conservation		
(c) ex situ conservation		
(d) cryopreservation		
99. The layer of atmosphere cor	ntaining much of ozone gas i	s
(a) thermosphere		
(b) troposphere		
(c) stratosphere		
(d) mesosphere	#6	
100. Radiation processing to elimin	ate spoilage microbes is done	at an irradiation dose of
(a) < 1 kGy		
(b) 1–5 Gy		
(c) 5–10 Gy		
(d) > 10 Gy		
117 1		

101.	Bio	perene, a bioavailability enhancer of nutrients, is isolated from
	(a)	cardamom
	(b)	black pepper
	(c)	capsicum
	(d)	turmeric
102.	Ref	ractometer in food industry is used to measure
	(a)	total soluble sugars
	(b)	total soluble salts
	(c)	total soluble solids
	(d)	total soluble sulphurs
103.	bety	wo genes (A and B) are linked under <i>cis</i> condition and a single crossover occurs ween the two genes in all the microspore mother cells, what will be the percentage of lens 'Ab' recombinants?
	(a)	100
	(b)	25
	(c)	50
83	(d)	10
104.		Neurospora, if the two genes are not linked, which one of the following statements is rect?
	(a)	Parental ditype and tetratype will be equal.
	(b)	Parental ditype will be equal to non-parental ditype.
	(c)	Tetratype and non-parental ditype will be equal.
	(d)	Parental ditype, non-parental ditype and tetratype, all will be equal.
- E	Tell	
105.		ploidy level of male honeybees is
	(a)	triploid
	(b)	diploid
	(c)	haploid
	(d)	tetraploid

106		·
	(a) Aegilops squarrosa	been derived from
	(b) Aegilops speltoides	
	(c) Triticum monococcum	
	(d) Triticum durum	
107.	Foreground and background selection is involved in	
	(a) pure-line selection	
	(b) hybrid selection	
	(c) transgenic breeding	
	(d) marker aided selection	254
108.	YV7 eveters of halvis	
100.	XYZ system of hybrid seed production is used in	
	(a) rice	
	(b) wheat	
	(c) maize	
	(d) sorghum	***
109.	A method used for rapid generation advancement without selector is	tion in a self-pollinated
	(a) pedigree method	
	(b) pure-line method	
	(c) backcross method	
	(d) single-seed decent method	
110		
110.	When the heterozygotes have a more extreme phenotype corresponding homozygotes the situation is called as	than either of the
	(a) overdominance	
	(b) codominance	
	(c) incomplete dominance	
	(d) partial dominance	
/117-A	24	

111.		e gene is dominant and another genependent. What will be the F_2 phenot		unt and	both the	genes are
	(a)	9:3:3:1				
	(b)	3:6:3:1:2:1				
	(c)	15:1				
	(d)	12:3:1			ő.	
112.	Law	w of segregation explains	5 ₂ =			
	(a)	segregation of alleles				
	(b)	segregation of genes				
	(c)	segregation of non-homologous chron	mosomes			
	(d)	segregation of sister chromatids			640	
113.	In a	gametophytic self-incompatibility, pare	ents with SIS1 a	nd SIS2 g	enotypes	will have
	(a)	incompatible combination				
	(b)	compatible combination				
	(c)	partially compatible combination				
	(d)	overcompatible combination				
114.	Rati	na variety of mango is developed from	the cross of			
	(a)	Neelam × Alphonso				
	(b)	Neelam × Dashehari				
	(c)	Langda × Neelam		e		
	(d)	Peri × Neelam			12	
115.	Mos	at widely used propagation method in	cashew is			
	(a)	air layering				
	(b)	softwood grafting	± "			
	(c)	patch budding				

(d) approach grafting

116.	Th	e medicinal use of C	oleus f	orskohli	i is		
	(a)	fibrifuge					
	(b)	antidiabetic					
	(c)	hypotensive					
	(d)	25701				€	
	1,-7						
117.	Die	osgenin is present in					The second secon
	(a)	fennel			9		
	(b)	fenugreek					2723
	(c)	coriander	34 ×				
	(d)	cumin					
118.	The	ratio of organic carl	bon to	organic	matter in	soil is	
	(a)	1:1.7					
	(b)	20:1					
	(c)	1:2					
	(d)	1.7:1	94				
119.	Don						
119.		nitrification is more in	1				
	(a)	well-drained soil					
	(b)	waterlogged soil					
	(c)	heavy soil					
	(d)	light soil					
120.	Whi	ch organism is used	to acc	umulate	copper f	rom factor	v waste?
	(a)	Bacillus subtilis					6 155884
	(b)	Pseudomonas putido	7				
	(c)	Zoogloea ramigera					
		F3 → 157		16.			1.41
	(d)	Escherichia coli					

 Nitrogen fixation is carried out by the enz 	zyme	e
---	------	---

- (a) nitrate reductase
- (b) nitrite reductase
- (c) nitrogenase
- (d) RuBisCO

122. What type of microscopy allows for the visualization of internal components within live, unstained specimens?

- (a) Phase-contrast
- (b) Fluorescence
- (c) Bright-field
- (d) Dark-field

123. Pasteurization involves the

- (a) exposure of food to high temperatures for short period to destroy harmful microorganisms
- (b) exposure of food to heat to inactivate enzymes that cause undesirable effects in foods during storage
- (c) fortification of foods with vitamins A and D
- (d) use of irradiation to destroy certain pathogens in foods

124. Carl Woese and his colleagues are best known for establishing the

- (a) five-kingdom system
- (b) three-kingdom system
- (c) prokaryote-eukaryote system
- (d) plant-animal system

125. Which of the following statements is true?

- (a) Symbiosis refers to different organisms living together.
- (b) Members of a symbiotic relationship cannot live without each other.
- (c) Symbiosis refers to different organisms living together and benefiting from each other.
- (d) A parasite is not a symbiosis with its host.

126	. K	ranz anatomy is not found in which of the	following p	lants?	
	~ (a) Maize			
	(b) Sugarcane		0611HW	
	(c)	Tea			
	(d)	Amaranthus			
127.	Су	clic photophosphorylation occurs in			
TO SERVICE	(a)	mitochondrial inner membrane		2404	
	(b)	only photosystem I			
	(c)	only photosystem II		undi en	<2
	(d)	both photosystems I and II			
128.	Du	ring germination of cereal seeds, the source	e of endoger	nous GA is	
	(a)	alcurone layer			
	(b)	seed coat			
	(c)	starchy endosperm			
	(d)	embryo			
129.	If a	cell A has an OP of 25 atm and TP of 15 atm	, and cell B	has OP of 30 atm an	d TP of
	10	atm, then the movement of water occurs		3 -1	
	(a)	from cell A to cell B			
	(b)	from cell B to cell A			
	. (c)	either from cell A to B or from B to A			
	(d)	No movement			

130.	Wh	nich of the following is an	anti-gibberel	lin?			
	(a)	Auxin	Ü				
	(b)	Abscisic acid					
	(c)	Ethylene		34 - 10			
	(d)	Cytokinin		*			
131.	The	e α -helix and β -pleated she	et of the pro	oteins are th	e		
	(a)	primary structure					
	(b)	secondary structure				ė	
	(c)	tertiary structure					
	(d)	quaternary structure					
132.	The	e enzyme which induces ne	egative super	coiling durin	ng DNA replica	ition is	
	(a)	primase					
	(b)	helicase					
	(c)	gyrase					
	(d)	DNA polymerase			13	6	
133.	Two	restriction endonucleases	having simile	ar recognitio	n and cleavage	site are re	eferred
	(a)	neoschizomers					
	(b)	isomers				ki.	
	(c)	isoschizomers			3		
	(d)	isodimers					
134.	Whi	ch one of the national co	ommittees re	commends i	for commercia	l release	of the
	(a)	GEAC					
	(b)	BCIL					
	(c)	RCGM					
	(d)	IBSC			Ke away		

135	ь. т ь	o clone an insert of several hund e used?	red kilobases, which	ch of the fo	llowing vecto	ors should
	(a) BAC				
	(b) M13				
	(c)	pBR322	2			
	· (d	pUC18				
106						
136.	6 a 5577	ghly exploited trait in genetically	modified crop at	global level	is	
	(a)	herbicide tolerance				
	(b)	insect resistance				
	(c)	improvement of nutritional qu	alities			
	(d)	virus resistance	¥			
137.	In		9			
107.		agarose gel electrophoresis, to in		of movem	ent of DNA	182
	(a)	increase concentration of agar	ose			*
	(p)	decrease concentration of again	rose			
	(c)	reduce concentration of EtBr				
	(d)	decrease power supply				
138.	The	marker system that utilizes bot	h restriction and I	OCD1:5		
	(a)	RAPD	ar restriction and r	ck ampiiii	cation is	
	(b)	RFLP				
	(c)	SSR				
	(d)	AFLP				
139.		restriction endonucleases A and erved sequences as its cleavage so by digested with A will be	B recognize 8 base pite. No. of fragment	pair and 12 s produced	base pair ur from DNA so	nbiased egment
	(a)	24	131 131			
	(b)	16				
	(c)	12				
	(d)	25				
	20					
/117-A			30			

ould

140. Which of the following statements is not consistent with the principle of totipotency?

- (a) Plant cell can differentiate into any cell type
- (b) Plant cell can regenerate entire plant by mitosis
- (c) Cell specialization is based on position
- (d) Cell specialization is based on gene content

141. Yeast artificial chromosome (YAC) is used for

- (a) cloning large segment of DNA
- (b) cloning only yeast genomic sequences
- (c) cloning of cDNA sequences
- (d) all DNAs except plant DNA sequences

142. What is the number of hydrogen bonds in the double helical B-DNA structure of 100 base pairs with 20 adenine and 10 thymine in one of the 2 strands?

- (a) 200
- (b) 230
- (c) 270
- (d) 300

143. Which of the following is true for telomerase?

- (a) A ribozyme
- (b) Carries its DNA template
- (c) Synthesizes microsatellites
- (d) Absent in somatic cell

144. How many nucleosomes per turn are there in solenoid structure of packed DNA?

- (a) Two
- (b) Four
- (c) Eight
- (d) Six

 (a) α₂ββ'ω (b) α₂ββ'σ (c) α₂ββ'ωσ (d) αββ'ωσ 146. Chromosome duplication without nuclear division is known as (a) cytodifferentiation (b) reduplication (c) endoduplication (d) endomitosis 147. Which type of marker SSR is? (a) Dominant (b) Codominant (c) Recessive (d) Epistatic 148. nptl gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm² 	145,	A complete RNA polymerase (holoenzymel can represent o	
(c) α ₂ ββ'ωσ (d) αββ'ωσ 146. Chromosome duplication without nuclear division is known as (a) cytodifferentiation (b) reduplication (c) endoduplication (d) endomitosis 147. Which type of marker SSR is? (a) Dominant (b) Codominant (c) Recessive (d) Epistatic 148. npfll gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²			y an represent a	S
(d) αββ'ωσ 146. Chromosome duplication without nuclear division is known as (a) cytodifferentiation (b) reduplication (c) endoduplication (d) endomitosis 147. Which type of marker SSR is? (a) Dominant (b) Codominant (c) Recessive (d) Epistatic 148. npfll gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm²		(b) $\alpha_2\beta\beta'\sigma$		
146. Chromosome duplication without nuclear division is known as (a) cytodifferentiation (b) reduplication (c) endoduplication (d) endomitosis 147. Which type of marker SSR is? (a) Dominant (b) Codominant (c) Recessive (d) Epistatic 148. npfil gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²		(c) α ₂ ββ'ωσ		
(a) cytodifferentiation (b) reduplication (c) endoduplication (d) endomitosis 147. Which type of marker SSR is? (a) Dominant (b) Codominant (c) Recessive (d) Epistatic 148. npfll gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²	2	(d) αββ'ωσ	5 %	
(a) cytodifferentiation (b) reduplication (c) endoduplication (d) endomitosis 147. Which type of marker SSR is? (a) Dominant (b) Codominant (c) Recessive (d) Epistatic 148. npfll gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²				
(a) cytodifferentiation (b) reduplication (c) endoduplication (d) endomitosis 147. Which type of marker SSR is? (a) Dominant (b) Codominant (c) Recessive (d) Epistatic 148. npfll gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²	146.	Chromosome duplication witho	ut nuclear division is known	as
(c) endoduplication (d) endomitosis 147. Which type of marker SSR is? (a) Dominant (b) Codominant (c) Recessive (d) Epistatic 148. nptll gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²				
(d) endomitosis 147. Which type of marker SSR is? (a) Dominant (b) Codominant (c) Recessive (d) Epistatic 148. npfII gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²		(b) reduplication		
(a) Dominant (b) Codominant (c) Recessive (d) Epistatic 148. npfll gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²		(c) endoduplication	9	
(a) Dominant (b) Codominant (c) Recessive (d) Epistatic 148. nptll gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²	8	(d) endomitosis		
(a) Dominant (b) Codominant (c) Recessive (d) Epistatic 148. nptll gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²	147.	Which time of an 1		= 2
(b) Codominant (c) Recessive (d) Epistatic 148. npflI gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²				
(c) Recessive (d) Epistatic 148. nptll gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²		ar 67		
(d) Epistatic 148. npfll gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²				
 148. nptll gene imparts resistance to (a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm² 				
(a) ampicillin (b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²		(d) Epistatic		
(b) hygromycin (c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²	148.	nptII gene imparts resistance to		
(c) kanamycin (d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²	((a) ampicillin		
(d) chloramphenicol 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm ²	(b) hygromycin		
 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm² 	(c) kanamycin		
 149. If the values of a set are measured in centimeters, the unit of variance will be (a) cM (b) cm (c) cm² 	(0	d) chloramphenicol		
(a) cM (b) cm (c) cm ²				
(a) cM (b) cm (c) cm ²	149. If	f the values of a set are measure	ed in centimeters, the unit of	f variance will be
(c) cm ²				
	(b	o) cm		
	(c) cm ²		442
(d) cm ³	(d) cm ³		
	,			

150.	If to	the correlation coefficient between X^2	efficient between 2 and Y^2 is	n the variab	eles x and y is p	o, the correlation
	(a)	p				
	(b)	p^2				
	(c)	zero				
	(d)	one				
		V.				
151.	Err	or sum of square i	n RBD as com	pared to CRI	O using the same	material is
	(a)	more				
	(p)	equal				
	(c)	less			- Si	
	(d)	not comparable				
152.	Con	mparing the means done through	of two differen	t treatments	with more number	er of observations
	(a)	Student's t-test				
g.	(b)	chi-square test				
	(c)	D^2 statistic				
	(d)	F-statistic				
		d				
153.	Whi	ch breed of poultry	y is known for	black meat?	,	
	(a)	Aseel				
	(b)	Kadaknath				
	(c)	Ankaleshwar				
	(d)	Miri				
154.	Whi	ch one of the follow	wing is not a t	rue constitue	ent of milk?	
	(a)	Milk fat				* *
	(b)	Casein				
	(c)	Phospholipid				
	(d)	Lactose				

155.	Fod	der preserved unde	r controlled anaero	bic condition	containing 35–5	50 dry	mat	ter is
	(a)	silage			93			
	(b)	roughage						
	(c)	haylage						
	(d)	straw						
156	V	on Swine bread of	antilo in develope	d form				
156.		an Swiss breed of		1 irom				
	(a)	Hariana × Brown						
	(b)	Tharparkar × Bro						
	(c)	Gir × Brown Swis						
	(d)	Sahiwal × Brown	Swiss	320				
157.	Min	imum fat percent i	in toned milk is					
	(a)	1.5						
	(b)	4.5						
29	(c)	3.0						
	(d)	0.5						
		glutamine. AAGA nine along with an					corp	orat
	(a)	GAG						
	(b)	AAG						
	(c)	AGA		a				- 111
	(d)	GAA						
159.	Mos	st hybrid crop culti	ivars are					
	(a)	heterozygous and						
	(b)	heterozygous and	homogeneous					
	(c)	inbred type and	heterogeneous					
	(d)	inbred type and	homogeneous					
160.	The	first nucleotide of	nascent mPNA h	as how many	nhosphates?			
100.		One	nascent mount	as now many	phosphatos.			
	(a)	Two						
	(b)	Three						
	(d)	Four						
	(4)							
/117.	٨		34					
/ 1 1 7.	M		.34					